

CLIFTON YAMBA MHE

EARTHWORKS MANAGEMENT PLAN

Manufactured Housing Estate (MHE) Development

110 – 120 Carrs Drive, Yamba

LOT 2 DP733507 and Lot 32 DP1280863

FOR:

CLIFTON YAMBA LAND PTY LTD

ATF YAMBA LAND TRUST

JANUARY 2024

Manage-Design-Engineer DOCUMENT CONTROL

- PROJECT: CLIFTON YAMBA MHE
- CLIENT: CLIFTON YAMBA LAND PTY LTD ATF YAMBA LAND TRUST
- AUTHOR: Andrew Smith

REVISION HISTORY

REVISION	DATE	Снескед Ву	
		ΝΑΜΕ	SIGNATURE
0	13/11/23	Troy Ryden	
			Ton
1	23/01/2024	Tory Ryden	
			Tan

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

CONTENTS

1.0	INTRODUCTION	4
2.0	SITE ESTABLISHMENT & TRAFFIC MANAGEMENT	5
3.0	BULK EARTHWORKS AND GEOTECHNICAL SUPERVISION	5
4.0	ACID SULFATE SOILS MANAGEMENT	8
5.0	DUST MANAGEMENT	8
6.0	VIBRATION MANAGEMENT	9
7.0	CONCLUSION	10
APPENI	DIX A – DA BULK EARTHWORKS PLANS	14
APPENI	DIX B – PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT	15
APPENI	DIX C – ACID SULFATE SOILS MANAGEMENT PLAN	16
APPENI	DIX D – CARRS DRIVE INSPECTION, MAINTENANCE & REPAIR PLAN	17
APPENI	DIX E – BULK EARTHWORKS ITP	20

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

1.0 INTRODUCTION

Manage-Design-Engineer Pty Ltd (MDE) has been engaged by Clifton Yamba Land Pty Ltd ATF Yamba Land Trust to undertake detailed design, documentation and project management for a proposed 216 lot Manufactured Housing Estate at 110-120 Carrs Drive Yamba (LOT 2 DP733507 and Lot 32 DP1280863). The location of the site is highlighted in Figure 1 below.

The project involves bulk earthworks, roadworks, stormwater drainage, sewer reticulation, water reticulation and telecommunications & electrical reticulation to service the proposed 216 Lot manufactured house dwellings and communal facilities and associated structures. It is anticipated that construction of civil works and subsequent dwelling and communal facilities will be undertaken in multiple stages over a 3-5 year period.

FIGURE 1 – PROPOSED MHE DEVELOPMENT SITE

A Development Application was submitted on 18 April 2023 following DA phase investigations and designs for the proposed development. Following Council's Request for Information received on 22 June 2023, the detailed earthworks plans prepared by MDE were updated, a copy of these updated plans are provided in **Appendix A**.

A Preliminary Geotechnical Investigation (Revision A – 20 May 2022) was undertaken on 1 July 2021 by Geotech Investigations to examine site geotechnical conditions and provide geotechnical engineering advice on design and construction constraints and requirement. This report is included in **Appendix B**. This investigation and report builds on existing investigations and reporting undertaken at 90 Carrs Drive Yamba prior to the construction of a similar 197 lot MHE development at that address.

Finally, a detailed Acid Sulphate Soils Management Plan was prepared by Precise Environmental to assess the potential for acid sulphate soils associated with the proposed earthworks and provide recommendations on the management and treatment of any actual acid sulphate soils during construction. This management plan is provided for reference in **Appendix C** of this report.

The findings and recommendations of the Geotech Investigations report and the Precise Environmental report were relied upon during the design and documentation of the bulk earthworks model and have also been referenced in developing this site specific earthworks management plan.

2.0 SITE ESTABLISHMENT & TRAFFIC MANAGEMENT

The contractor is to establish a site office and compound facility within the site boundary at a location approved by the Superintendent. The site office is to include a separate office for the use of the Principal, Superintendent and PCA when on site. Temporary perimeter security fencing of each stage of the works is to be provided for the full perimeter of the site specific to that stage of works under construction. The contractor is responsible for all costs associated with the provision of a site office and compound, site establishment and dis establishment and all associated temporary services required to complete the works.

Prior to any works commencing, the contractor is to undertake a Road Dilapidation Survey for Carrs Drive and advise the Superintendent of any existing road pavement defects.

The contractor must also submit a Dial Before You Dig application for existing services within the vicinity of the site and undertake all necessary non destructive investigations to physically locate and survey all existing underground infrastructure prior to works commencing.

The control of traffic around and into the site will be the responsibility of Contractor for the duration of the contract. The effective planning and management of vehicle movements is necessary to minimise any impact on the surrounding residential neighbourhood and to ensure the safety of the public and workers. To achieve this the Contractor is required to develop a site specific Construction & Traffic Management Plan and Traffic Control Plans which comply with RMS's Traffic Control at Worksites Manual. These documents are to be submitted to the Superintendent and Clarence Valley Council for approval prior to any works commencing on site.

Any traffic control on public roads is to be undertaken by suitably qualified traffic controllers under a traffic control plan developed by a suitably qualified designer in accordance with the Traffic Control at Worksites Manual.

It is proposed that construction access to the site is to be via Carrs Drive at the northern most access point that is practical to achieve safe site access. The Contractor is to submit to the Superintendent for approval details of the proposed location and construction of the preferred site access. The contractor is responsible for all costs associated with the provision and removal of temporary all weather access tracks (both within and external to the site) & stabilised site access points for the duration of the project. On receipt of all details relating to the proposed construction access, Manage-Design-Engineer Pty Ltd will make an application to Clarence Valley Council for a S138 approval for the construction of the temporary access.

The Contractor will be responsible for maintaining the pavement within Carrs Drive (including the costs associated with that maintenance) to an acceptable standard for the duration of their contract to ensure the safety of the community. A pavement inspection, maintenance and repair plan has been included in **Appendix D**.

3.0 BULK EARTHWORKS AND GEOTECHNICAL SUPERVISION

The proposed Development Application earthworks plan (**Appendix A**) details the import of approximately 240,000m3 (solid) of fill material to raise the level of the site sufficiently to achieve flood immunity and facilitate proper drainage and sewer reticulation for the allotments and site in general. It is proposed that the bulk filling be undertaken as one continuous operation using locally sourced fill material from an approved quarry or approved borrow site. There are currently no plans to undertake filling operations with dredge material.

Site bulk fill levels range from RL 3.3 to RL4.1, which will enable all habitable structures on site to achieve the required minimum finished floor level of RL 3.5m AHD. Pre filling levels show the site's existing ground level to be approximately RL 1m to RL 1.5m AHD which means fill depths will range from 1.8m to 3.1m.

The proposed fill footprint is limited to the R1: General Residential zoned land and will not impact on the C3: Environmental Management or C2: Environmental Conservation zoned land. Within the General Residential zoned land, earthworks will not be undertaken within the bed and bank zone of the existing stream and therefor there are anticipated impacts on that watercourse.

Following award of the Bulk Earthworks Construction Contract, details of the fill type, source and suitability for use will be provided by the Contractor to the Superintendent and Clarence Valley Council for approval. As part of that submission material test reports completed by a NATA accredited laboratory detailing the following material characteristics as a minimum will be required:

- Material Gradings
- CBR (Minimum CBR 5 required)
- Shrink / Swell Index (Maximum Shrink Swell Index of 1.5%)
- PI & Liquid Limit (Maximum PI of 15% and Maximum LL of 35%)

The Contractor is to review and reference the Preliminary Geotechnical Investigation report by Geotech Investigations when sourcing proposed fill material for the project.

All site fill operations associated with this development must be undertaken under Level 1 Supervision and Testing in accordance with AS3798 - 2007. This includes fill to roads, allotments and common areas. Under the provisions of the contract, the Level 1 Geotechnical Consulting Engineer will be nominated by the Principal and engaged by the Contractor to complete the required works.

All other testing of roadworks gravels, trench subgrades, trench backfill, material quality (except for bulk fill), concrete pavements etc is the responsibility of the Contractor and their nominated NATA accredited tester under a Level 2 inspection and testing regime and in accordance with the Northern Rivers Design and Construction Manual.

The Contractor is required to notify the Superintendent of the following milestones during bulk earthworks operations to allow the Principal's surveyor to undertake site surveys:

- On completion of clearing operations prior to stripping
- On completion of stripping prior to filling
- On completion of bulk filling and detailed trimming but prior to topsoiling

The Principal's surveyor may from time to time undertake additional site surveys to confirm fill quantities for claim assessment and programming purposes.

Other inspection, witness and hold points required during bulk earthworks operations are outlined in the Bulk Earthworks ITP included in **Appendix E**, the Northern Rivers Design and Construction Manual and the contract specification.

Reference is made to Geotech Investigations Preliminary Geotechnical Investigation which is provided in **Appendix B**. This investigation was undertaken to assess the following aspects of the site:

- (a) Subsurface Conditions
- (b) Site preparation and requirements for filling
- (c) Topsoil Stripping Depths
- (d) Filling Procedures
- (e) Assessment of soft soils and requirement for pre loading
- (f) Broadscale footing recommendations and site classifications

The geotechnical investigation noted the following site characteristics:

- Up to 300mm of topsoil overlying alluvial sands
- Groundwater at depths ranging from 0.5m to 1.2m

• Alluvial soils comprising sandy clay and sand, fine to medium grained and medium to high plasticity, firm to stiff

The investigations also identified the following site characteristics which are relevant to the proposed bulk fill operation:

- The site is located within a low lying alluvial area with poor drainage and shallow groundwater
- The site is underlain primarily by sand rather than clay soils therefor consolidation settlement is considered negligible (<20mm-30mm with that settlement occurring during bulk filling activities). This limited magnitude of settlement will therefor have no impact on existing groundwater levels.
- Site trafficability will be a concern during initial stages of site stripping and placement of lower fill layers and following prolonged or heavy rainfall events. It is recommended that a crushed rock or similar layer be placed in areas of high construction traffic movement
- It is recommended that a 500mm thick 'bridging layer' of sand material be placed after stripping but prior to general filling to address any potential issues arising from the high water table and thin layer of alluvial clay in the upper subgrade layer
- Careful attention will need to be given to the maintenance of appropriate cross falls during and following site
 works to promote surface drainage. The surface of any exposed subgrade or fill layers should be sealed with a
 smooth drum roller at the end of each day's work, or prior to anticipated rainfall events, to reduce the potential
 for moisture ingress.

Based on the findings of Geotech Investigations report and field work, along with knowledge gained through other similar bulk earthworks operations in Carrs Drive, the following additional recommendations are made in relation to the proposed earthworks operation:

- Drainage swales, diversion mounds and silt fencing should be installed around the perimeter of the site to reduce sediment runoff
- Any material to be disposed of off site should be assessed for disposal requirements. Much of the material is likely to be classified as Virgin Excavated Natural Material (VENM), however any disturbed materials will require waste classification assessment prior to disposal.
- The use of heavy plant and compaction using vibratory methods may result in an increase in pore water pressures and subsequent 'pumping' of moisture into the lower fill layers. It is proposed that a 500mm bridging layer of sand be placed prior to bulk earthworks general fill material to limit the potential for this to occur
- Preference is for the use of granular over cohesive fill materials, particularly in lower fill areas
- All vegetation root affected material, topsoil, over wet material and uncontrolled fill or otherwise unsuitable material should be stripped and stockpiled for later reuse or landscaping purposes
- The exposed subgrade is to be proof rolled following stripping operations with any wet or excessively deflecting or otherwise deleterious materials to be excavated and replaced at the direction and to the satisfaction of the Level 1 Geotechnical Engineer
- Fill should be placed in layers not exceeding 250mm loose thickness and be compacted to a minimum dry density ratio of not less than 95% standard compaction and +/- 2% standard OMC.
- All site filling should be carried out in accordance with Level 1 construction monitoring and testing as defined in AS3798 2007.
- Temporary batters may be cut no steeper than 1H:1V for heights up to 1.5m and should be protected from rainfall by trimming smooth at the end of each days work. Surface water should be diverted away from the face of batters

Additional fill specifications are included in the Engineering Design plans prepared by Manage-Design-Engineer Pty Ltd and included in **Appendix A**.

4.0 ACID SULFATE SOILS MANAGEMENT

Precise Environmental were engaged to undertake a site acid sulfate soils investigation and prepare a detailed Acid Sulfate Soils Management Plan for the site. This management plan is included in **Appendix C**.

Precise Environmental have recommended the following be undertaken during earthworks operations:

- Place aglime at a rate of ≥ 5kg/m2 across all stripped surfaces
- Excavated ASS which have not been treated must be contained within a bunded area constructed din accordance with relevant design standards
- A guard layer of aglime is to be placed beneath and over the surface of untreated soils and surrounded by a lime enriched perimeter
- Leachate collection drains should be installed surrounding any ASS treatment pads within the bunded area
- Verification testing is required on all treated material not used as backfill on the day of excavation to verify that sufficient lime has been added to neutralise the soils net acidity

The contractor is to be aware of and adhere to the recommendations of the Acid Sulfate Soils Management Plan in Appendix D for all site earthworks operations. The Contractor's Environmental Management Plan and Construction Management Plan shall include provisions and procedures to ensure compliance with the Acid Sulfate Soils Management Plan.

5.0 DUST MANAGEMENT

Earthworks filling operations and general civil and site construction activities can generate dust which has the potential to cause nuisance to nearby residents and the general public. Typical construction activities that could result in dust emissions include:

- General earthworks particularly during site establishment
- Vegetation clearing and mulching
- Bulk earthworks
- Topsoil/material handling including stockpiling, material loading and material haulage
- Vehicular movements over unpaved surfaces
- Wind erosion of exposed areas and temporary stockpiles
- Tracking of dirt onto roads

The likelihood and severity of dust generation is influenced by Environmental factors such as:

- Wind Direction determines whether dust is transported in the direction of sensitive receivers
- Wind Speed governs the potential suspension and transport of dust
- Soil type more erodible soil types have an invfreased soil or dust erosion potential
- Soil moisture increased soil moisture reduces soil or dust erosion potential
- Renfall or dew rainfall or dew wets the surface of the soil and reduces the risk of dust generation

The potential impacts of dust caused by construction activities might include:

- Deposition of dust on surfaces where it may cause damage and/or lead to a need for increased cleaning or repair
- Aesthetic effects that arise from visible airborne dust plumes and from deposits of dust on surfaces
- Need for increased maintenance of air filtering systems e.g. air conditioners

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

- Potential adverse health effects including eye, nose and throat irritation from excessive inhalation of fine particles
- Impacts on water quality and/or vegetation health from dust deposition
- Impacts on residential sensitive receivers, including impacts on living areas, swimming pools and general amenities
- Complaints from the public

The following dust management and mitigation measures must be implemented by all contractors engaged to undertake site works in relation to the MHE development. Costs associated with adherence to these measures should be included in the contractors lump sum pricing of the works:

- 1. Weather forecasts are to be reviewed daily with appropriate measures implemented where unfavourable conditions are anticipated e.g. dry weather and/or strong winds
- 2. Modify construction activities and works programs during periods of high winds if they have the potential to increase dust generation
- 3. Exposed surfaces with no scheduled work for two weeks or more will be managed to minimise dust generation. Exposed surfaces to be stabilised progressively as works are completed. The use of water carts and smooth drum rollers to suppress dust and covering exposed areas with geofabric (for short periods) or hydromulching and revegetation (for long periods) shall be undertaken as required.
- 4. Dust suppression measures such as the use of water carts, soil binders, sprinklers or dust screens (or a combination of measures) will be utilised where applicable to control dust emissions. The frequency of use will be modified to accommodate prevailing conditions.
- 5. Erosion control structures shall be maintained and accumulated sediment regularly removed to remove potential dust sources
- 6. Stockpiles of topsoil are to be stabilised with a suitable cover crop where stockpiles are to remain for longer than four weeks
- 7. Access roads are to be regularly watered and compacted to minimise dust generation
- 8. Stabilised site accesses must be maintained to minimise dust, soil or mud from being deposited by vehicles to public roads. Haulage of materials into the site during periods of wet weather will be avoided where the tracking of mud onto public roads cannot be managed through stabilised site access or manual cleaning of tyres. Any deposition of dust, soil or mud external to the site boundaries shall be cleaned using methods including brooms, street sweepers and bobcat broom attachments.
- 9. Vehicle movements are to be limited to designated site access points and site speed limits reduced to 40km/h or less, depending on site and weather conditions.
- 10. All haulage trucks are to be covered to prevent the release of dust and other materials at all times when on public roads

The Contractor will ensure regular inspections of the public road network in the vicinity of the site and will respond to any issues raised in relation to dust generation associated with the site works.

6.0 VIBRATION MANAGEMENT

As with dust generation, earthworks filling operations and general site civil works have the potential to generate vibration which can cause a nuisance to sensitive receivers. The risk for site generated vibration to impact on these sensitive receivers will be greatest during the bulk filling operation due to the use of heavy plant and equipment and vibratory compaction methods.

The use of heavy plant and equipment and construction activities in general have the potential to generate vibrations that can travel to nearby properties and cause a nuisance. The magnitude of the vibrations, the distance travelled and the severity of the impacts vary depending on a number of factors including the type of plant & equipment, the type of activity being undertaken, the soil profile in the area, the depth of the water table and the type of structure, age of structure and the quality of the construction of the structure.

The following vibration management and mitigation measures will be implemented for site activities to limit the impact on sensitive receivers:

- 1. The contractor is to ensure that sensitive receivers are notified of construction activities that have the potential to generate vibrations
- 2. Contact details for the site manager / construction manager are to be clearly displayed on the site signage at the entrance to the site and provided directly to sensitive receivers
- 3. Construction activities are to be planned to ensure appropriate sized plant and equipment are available for the works being undertaken
- 4. Where possible, the use of vibratory compaction equipment should be limited if there is a potential to cause unacceptable levels of vibration and impact on sensitive receivers

In the event of a valid vibration complaint or damage to structures, vibration monitoring is to be carried out as soon as possible. If exceedances are detected, work methodologies and selected plant and equipment will be further reviewed to reduce the impact to acceptable levels where practicable.

7.0 CONCLUSION

The development of 110-120 Carrs Drive to create 216 Manufactured Housing sites involves the import of approximately 240,000m3 of general fill material. This report outlines the requirements for the procurement, haulage and placement of that fill material on site to achieve the requirements of the design, relevant Australian Standards and Schedule X1 – Natural and Environmental Hazards: Flood and Fill Management' of the DCP.

Geotechnical and Acid Sulphate Soils site investigations have been undertaken to determine the existing site conditions and requirements for fill materials and processes. Those investigations are included in the Appendix to this report.

The proposed filling operation may have impacts on the surrounding road network and community. This report provides guidelines and strategies for the management of the bulk earthworks operation to ensure the works are undertaken efficiently and effectively and with minimal impacts on the environment, existing infrastructure and surrounding community.

The following table details the objectives and controls set out in Schedule X1 of the Clarence Valley Council Residential DCP 2011 along with details of how these controls and objectives have been met.

DCP OBJECTIVE /	DCP OBJECTIVE / CONTROL DESCRIPTION	
CONTROL		
NUMBER		
OBJECTIVE 1	Ensure that flood and drainage impacts are considered for the development of the entire WYURA and not just in relation to the development of individual land parcels within WYURA	The development application includes a Flood Impact Assessment undertaken by BMT to address Objective 1. This FIA assesses the flood and drainage impacts of both the individual land parcel as well as the entire WYURA.
OBJECTIVE 2	Minimise flood and drainage impacts to the	The development application includes a Flood

	development in the WYURA on adjoining residential neighbourhood and property including ensuring that there is no net increase in the number of existing dwellings whose habitable floor levels become inundated by the ultimate filling and development of the entire WYURA	Impact Assessment undertaken by BMT to address Objective 2. This FIA demonstrates that impacts are minimised and there is no net increase in the number of existing dwellings whose habitable floor levels become inundated.
OBJECTIVE 3	Ensure that future development of WYURA is undertaken in accordance with the 'Lower Clarence Flood Model Update 2013 – September 2013', adopted by Council in March 2014 or any subsequent model update that Council may adopt	The Bulk Earthworks design has been undertaken in accordance with the updated Lower Clarence Flood Model (2022). Earthworks have been designed to facilitate a minimum finished habitable floor level of RL3.5m AHD. The FIA undertaken by BMT has been updated to take into account the updated LCFM 2022
OBJECTIVE 4	Ensure that any stage of the overall WYURA development is successfully integrated and does not prejudice or detrimentally impact overland flow path/s, existing watercourses and stormwater management network	The proposed development has been designed to ensure all existing drainage paths are maintained and where appropriate, improved. All development stormwater flows discharge directly to the existing drainage channel within the development property and subsequently to Oyster Channel with no impact on neighbouring properties. Overland flow paths via existing drainage channel through the property will not be impacted.
OBJECTIVE 5	Ensure that Acids Sulphate Soil impacts are assessed and appropriately managed.	An Acid Sulphate Soils Assessment and Management Plan have bee completed for the proposed earthworks operation and has been provided with the Development Application. The Earthworks Contractor will be conditioned to comply with the requirements of the Management Plan during the construction phase of the project.
CONTROL C1	The Consent Authority must not grant consent to the commencement of land fill or other earthworks associated therewith unless an Earthworks Management Plan (EMP) is prepared to ensure that level of finished lots are at least at the level of the 1 in 100 year flood event, whilst also maintaining an effective drainage network, overland flow path/s and meeting other development standards of Council	An earthworks design has been completed for the proposed development that raises the level of the development site to above the revised (LCFM 2022) 1 in 100 year flood level. The Development Application design also details the proposed drainage network for the development demonstrating compliance with both Council drainage design requirements. Existing drainage networks and flow paths will be maintained and where appropriate, improved to meet required standards.
CONTROL C2	Where surface soils are stripped and there is a potential for sulphate soils to be disturbed, measures are to be identified in the EMP and are to be in place to manage this occurrence and neutralise any ASS contamination outside of the	An Acid Sulphate Soils investigation and subsequent Management Plan has been completed for the proposed development. The management plan will be implemented throughout the construction phase of the

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

	treatment site	development.
		This EMP identifies measures required to manage and neutralise any potential or actual acid sulphate soils.
CONTROL C3	 An EMP must include: (a) A SOEE / impacts including assessment and management of acid sulphate soils (b) All required licencing approvals from State Government Authorities (c) Staging plans and detail of finished survey levels for fill (d) Area and extent of fill requirements, supported by engineering design detail (e) Dredge location/s and proposed pipe routes to WYURA (f) Maintenance and management plan for the period of the dredging at and in the vicinity of the URA (g) The design and location of all stormwater drainage corridors (h) Overland flow paths to reach local estuaries/waterways (including Oyster Channel) and the URA drainage reserve / floodways (i) The required widths/depths of overland flow paths (j) A program of works detailed actions and duration of filling activity and compaction 	 (a) The Acid Sulphate Soils Management plan prepared by Precise Environmental provides an assessment of and management plan for acid sulphate soils relating to this proposed development (b) All required licencing approvals will be obtained prior to commencement of works following detailed design (c) Bulk earthworks are proposed to be undertaken in one stage of works. Proposed finished surface levels of fill are detailed in MDE's DA Bulk Earthworks design plans (d) Refer to MDE's DA Design plans and certification (e) NA – it is anticipated that fill will be sourced from a licenced quarry or similar licenced or approved fill source. There are currently no applications or plans to undertake filling of the site with dredge material. (f) NA – refer item (e) response above (g) The design and location of all stormwater drainage corridors has been detailed in MDE's DA Civil Engineering design plans (h) The development drainage design allows for overland flow paths that discharge to the existing drainage channel within the development site that flows to the Oyster Channel. Existing overland flow paths external to the site will not be impacted, nor will the drainage channel/path through the site to Oyster Channel. (i) The overland flow paths within the development site are detailed in MDE's DA design plans. The width and depth of the existing drainage channel through the development site are detailed in MDE's DA design plans. The width and depth of the existing drainage channel through the development site will be maintained. (j) It is anticipated that the earthworks operation will be maintained. (ji) It is anticipated that the earthworks operation will be developed prior to construction once detailed designs are complete and a suitable fill source has been identified

		and approved.
CONTROL C4	The consent authority must not grant consent to the erection of a building or the carrying out of works on land to which this plan applies, if the carrying our of the proposed development	This EMP has been prepared in conjunction with MDE's bulk earthworks design. The proposed works are consistent with this EMP.
	 (a) Be inconsistent with an EMP; and, (b) Detrimentally increase the potential flood affectation on other development or property in WYURA or result in a risk to human life 	A Flood Impact Assessment has also been completed which takes into account the proposed fill operation and other development sites within the WYURA.

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

APPENDIX A – DA BULK EARTHWORKS PLANS

MODEL 2022 WITH 1% AEP FLOOD LEVEL PLANS TO BE O BE NO LESS THAN THE 100 YEAR (1% AEP) PRELIMINARY PLANS PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR ONLY NOT FOR CONSTRUCTION DA CIVIL DRAWING VELOPMENT DRAWING TITLE: VELOPMENT DRAWING TITLE:	PLAINS TO BE PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION	PLAINS TO BE PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION	PLAINS TO BE PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION	LOT 32 DP128863	DWG No:	D14		SHEET: 14	^{OF} 43	REV:			
O BE NO LESS THAN THE 100 YEAR (1% AEP) PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION DA CIVIL DRAWING	O BE NO LESS THAN THE 100 YEAR (1% AEP) PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION DA CIVIL DRAWING	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION DA CIVIL DRAWING	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR CONSTRUCTION DA CIVIL DRAWING	RIVE	DRAWING TITLE:	EARTHV	VORKS PLAN						
O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR			- [DA CIVIL DRA	WING					
O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR										
O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	O BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS FOR DA PURPOSES ONLY NOT FOR				CONS	SIRUC	IION				
O BE NO LESS THAN THE 100 YEAR (1% AEP)	O BE NO LESS THAN THE 100 YEAR (1% AEP)	PLANS TO BE PRINTED IN COLOUR PRELIMINARY PLANS	D BE NO LESS THAN THE 100 YEAR (1% AEP) PRINTED IN COLOUR PRELIMINARY PLANS										
O BE NO LESS THAN THE 100 YEAR (1% AEP)	O BE NO LESS THAN THE 100 YEAR (1% AEP)	D BE NO LESS THAN THE 100 YEAR (1% AEP)	D BE NO LESS THAN THE 100 YEAR (1% AEP)				FOR D	A PUR	POSE	ES			
PLANS TU BE	PLANS IU BE	PLANS IU BE	PRINTED IN COLOUR				PRELIM	INARY	PLA	NS			
PLANS TO BE	PLANS TO BE	PLANS TU BE	PLANS TU BE	O BE NO LESS THAN THE 1	00 YEAR (1% AEP)		PRINTEI	D IN (JOLO	UR			
				MODEL 2022 WITH 1% AE	P FLOOD LEVEL								
				D MODEL 2022 WITH 1% AF									

CLIENT

DEVELOPMENT APPLICATION CIVIL WORKS PLANS

PROPOSED MHE DE 110 & 120 CARRS DR YAMBA, NSW 2464 LOT 2 DP733507 & I

PROJECT

		DA	CIVIL DRAV	WING	
EVELOPMENT RIVE	DRAWING TITLI	EARTHWORKS	S SECTIONS	- SHEET 1 OF	3
LOT 32 DP128863	DWG No:	D15		SHEET: 15 OF 43	REV: 1

			DESIGNED: T.RYDEN	DATE: JAN 2024	
			DRAWN:	SCALE:	
			A.SCHMID	AS SHOWN	
			SURVEYING: MACRO SURVEYING	SHEET SIZE: A1	
1	ISSUED FOR DEVELOPMENT APPLICATION - AMENDED SITE FORMATION HEIGHTS	23.01.2024			
0	ISSUED FOR DEVELOPMENT APPLICATION	08.09.2022	ISSUED FOR DEVEL	OPMENT APPROVAL	
ISSUE	DESCRIPTION	DATE		DNSTRUCTION	Manage Desig

CONTINUATION SECTION - B

									1		– BULK EARTHWORKS GENERAL FILLING	
		HIGH 3.8 HIGH 3.8		LOT 89		LOT 90	חוסח 4.וב/	ROAD 1 CL	HIGH 4.127		LOW HEIGH BOULDI	
DESIGN GRADELINE		0%	<	0%	<	0%	-	2.5%	2.5%		0%	->
VERTICAL GEOMETRY												
HORIZONTAL GEOMETRY												
DATUM RL-13.0										$\left \right\rangle$		
CUT / FILL	-2.61	-2.604 -2.653	-2.65	-2.635 -2.684	-2.68	- 266	-2.66 -2.937	-2.816	-2.919 -2.701	-2.791	-2.772	-2.83
DESIGN SURFACE	3.75	3.75 3.8	3.8	30 30 30 30 30 30 30 30 30 30 30 30 30 3	3.85	L C C	3.85 4.127	4.015	4.127 1	14	4	4
NATURAL SURFACE	1.140	1.146 1.147	1.150	1.165 1.166	1.170	190	1.190	1.199	1.208	1.209	1.228	1.170
CHAINAGES	175.000	177.612 178.112	180.000	187.512 188.012	190.000		200.012 200.262	204.762	209.262 200.262	210.000	220.000	229.712
	Но	rizonta	1:25	50 V	ertic	al 1:250						

BULK EARTHWORKS SECTION - B

EXIST	TING STREAM									ſ ^{EXI}	sting s	URFACE			/ BULI GEN	< EARTHW ERAL FILL	ORKS		с	10											
	JUNDARY		Г ^{ВАТТЕ}	R SLOPE 1:4							DESIGN S	SURFACE					IGH 3.721		ROAD 2 (IGH 3.656			9 65 101 3 65								
	SITE BC						(COMMUNITY FACILITY - CROQUET				COMMUNI	TY FACILITY - BOW	/LS					∇		LOT 83		LOT 84	LOT	85		DT 86		DT 87		LOT 88
																			/////												
DESIGN GRADELINE		2!	5% _2.5%	%5.2%	5.25% 3.7%	5 1.93	%	0%	7	07%			0%			2.25% 5	.24%	-2.5%	2.5%	6	0%		0%	09	%			0%			0%
VERTICAL GEOMETRY																					-										
HORIZONTAL GEOMETRY																															
DATUM RL-13.0																															
CUT / FILL		0.0	-1.677 -1.703	-1.938	-2.079	-2.172 -2.34	-2.399 -2.424	-2.398	-2.367 -2.363	-2.554	-2.536	-2.506		-2.475	-2.477	-2.516 -2.572	-2.686 -2.681	-2.6/ -2.533	-2.476	-2.578 -2.471	-2.461	-2.433 -2.482 -2.48	-2.058 -1.99	-2.015	-1.908	-1.957 -2.016	-2.14		22C.2-	-2.467	-2.538 -2.61
DESIGN SURFACE		0.805 1.496	2.5 2.529		2.929	3.03 3.2 2.2	3.2/1 3.3	S. 2	3.3 3.3	3.5	3.5	3.5 5.5		3.5	3.5	3.538 3.597	3.721 3.716	3.706 3.588	3.539	<u>3.656</u> 3.55	3.55	<u>کرد: 3.6</u> 3.6	3.6 3.6	3.65	3.65	3.65 3.7	3.7	1 7	2.7 2.7	3.75	3.75
NATURAL SURFACE		0.805	0.823 0.826 0.826	0.841	0.850	0.858	0.876	0.902	0.933	0.946	0.964	0.994		1.025	1.023	1.022 1.025	1.035 1.035		1.063	1.078 1.079	ō,	1.11/ 1.118 1.120	1.542 1.610	1.635	1.742	1.693	1.560	7 7 7	0/C.1 CDC 1	1.283	1.212
CHAINAGES	0.000	6.956	14.018 15.202	20.000	22.854	25.586 26.327	30.000 31.497	40.000	50.000 51.497	54.326	60.000	20.000		80.000	88.326	90.000 92.664	95.012 95.125	202.ce	101.962	106.662 106.912	110.000	118.912 119.412 120.000	130.000 131.412	131.912	140.000	142.712 143.212	150.000		100.000 165 112	165.612	170.000 175.000
	Horizontal	1:250	Vertic	al 1:250					_ · · ·																						

www.md-engineer.com.au

CLIENT

MANAGE-DESIGN-ENGINEER PTY LTD RESERVE THE RIGHT TO THE DESIGN AND DOCUMENTATION OF THE WORK CONTAINED ON THIS DRAWING. THIS WORK IS COVERED BY COPYRIGHT AND CANNOT BE REPRODUCED OR COPIED IN ANY FORM WITHOUT THE WRITTEN PERMISSION OF MANAGE-DESIGN-ENGINEER PTY LTD. ANY LICENSE, EXPRESSED OR IMPLIED, TO THE USE OF THIS DOCUMENT IS RESTRICTED TO THE TERMS OF AGREEMENT BETWEEN THE CLIENT NOTED ON THIS DRAWING AND MANAGE-DESIGN-ENGINEER PTY LTD DEVELOPMENT APPLICATION CIVIL WORKS PLANS

PROPOSED MHE DE 110 & 120 CARRS DR YAMBA, NSW 2464 LOT 2 DP733507 & I

PROJECT

	DA C	IVIL DRAWING
/ELOPMENT	DRAWING TITLE:	
VE	EARTHWORKS	SECTIONS - SHEET 2 OF 3
OT 32 DP128863	DWG No:	
	DWG NO: D16	SHEET: 16 OF 43 REV: 1

			DESIGNED: T.RYDEN	DATE: JAN 2024	
			DRAWN: A.SCHMID	SCALE: AS SHOWN	
			SURVEYING: MACRO SURVEYING	SHEET SIZE: A1	
1 0	ISSUED FOR DEVELOPMENT APPLICATION - AMENDED SITE FORMATION HEIGHTS ISSUED FOR DEVELOPMENT APPLICATION	23.01.2024 08.09.2022	ISSUED FOR DEVEL	OPMENT APPROVAL	
ISSUE	DESCRIPTION	DATE		DNSTRUCTION	Manage Desi

CONTINUATION SECTION - C

							/	/	STING SURFACE DESIGN SURFACE		- BULK EARTHWORKS GENERAL FILLING	H 3.703		HIGH 3.703
	LC	DT 146		LOT 147		LOT 148		/	LOT 149	/	LOT 150	HIGH	7	\cong
				/ /	/			/ / /	_/ // /_				//	//
DESIGN GRADELINE				0%		0%		_	0%		0%		-2.5%	2.5%
VERTICAL GEOMETRY				~				•						
HORIZONTAL GEOMETRY														
DATUM RL-14.0														
CUT / FILL	-2.867	-2.873 -2.825	-2.832	-2.851	-2.803	-1.01	-2.829 -2.78	-2.789		-2.81 -2.761		-2.794 -2.794	-2.998 -2.898	-3.023
DESIGN SURFACE	3.7	3.7 3.65	3.65	3.65	3.6	0.0	3.6 3.55	3.55		3.5	ς. ι	3.5 3.5	3.703 3.59	3.703 3.512
NATURAL SURFACE	0.833	0.827 0.825	0.818	662.0	0.797	0./89	0.771 0.770	0.761		0.739 0.739	0./34	0.706 0.706	0.705 0.692	0.680 0.683
CHAINAGES	175.000	<u>177.078</u> 177.578	180.000	186.478	186.978	190.000	196.378 196.878	200.000		200.178 208.178	710100 7	220.000 220.178	220.428 224.928	229.428 230.000
	Hc	rizont				tical 1:250								l l

BULK EARTHWORKS SECTION - C

	EXISTING STREAM _			OPE 1:4			_	0 CL										<u>~</u>	2 CL	33											
	E BOUNDAR			HIGH 2.53	BASIN No.5		HIGH 3.48	A ROAD 1		LOT 200	LO	T 201	LOT 202		LOT 203		LOT 204	HIGH 3.91	∠ ROAD	нісн 3:86		LOT 140	LOT 141		LOT 142	НІGН 3.85	LOT 143	LOT 144	HIGH 3.8	52.5 HDIH LOT 145	LOT 146
	SIT SIT				BIO-																										
DESIGN GRADELINE		-	25%	* <	->	~~~	-2.5	% _ 2.5%			0%		0%		0%		0%		-2.5%	2.5%		0%	0%		0%	~~~	0%	0%		0%	0%
VERTICAL GEOMETR [\] HORIZONTAL GEOM																															
DATUM RL-14.0																															
CUT / FILL		0.0	-1.179 -1.831	-1.858	-0.651 -0.648 -1.035	-2.14	-2.785	-2.685 -2.663	-2.785	-2.776	-2.757	-2.739 -2.788 -2.787		-2.767 -2.764 -2.813	-2.797	-2.792 -2.841	-2.827	-2.817 -3.077	-2.954 -2.897	-3.007 -2.843	-2.838	-2.83	-2:879	-2.872 -2.921 -2.921		-2.913 -2.963 -2.962	-2.965 -2.915	01 F. Z-	-2.919 -2.869 -2.87	-2.892	-2.844 -2.851 -2.867
DESIGN SURFACE		0.658	1.843 2.5	2.53	1.33 1.33 1.719	2.83	3.481	3.369	3.481 3.5	3.5	3. 5.	3.55 3.55 3.55		3.55 3.55 3.6		3.6	3.65	3.65 3.911	3.797 3.743	3.863 3.7	3.7	3.7	3.75	3.75 3.8 3.8		3.8 3.85 3.85 3.85	3.85 3.85 3.85	0.0	3.8 3.75 3.75	3.75	3.7 3.7 3.7
NATURAL SURFA	CE	0.658	0.664 0.669	0.672	0.679 0.682 0.684	0.690	0.696	0.704	0.714	0.724	0.743	0.761 0.763 0.763		0.783 0.786 0.787	0.803	0.808 0.809	0.823	0.833 0.834	0.843 0.847	0.856 0.857	0.862	0870	0.871	0.878 0.879 0.879		0.887 0.887 0.888	0.885 0.885 0.085	0.004	0.881 0.881 0.880	0.858	0.856 0.849 0.833
CHAINAGES	0.000	5.230	10.000 12.632	13.832	17.432 18.832 20.000	23.332	26.328	30.000 30.828	35.328 35.578	40.000	50.000	58.878 59.378 60.000		70.000 71.378 71.878	80.000	82.678 83.178	000.06	95.178 95.428	100.000 102.128	106.928 107.178	110.000	119.178	119.10/0	128.578 129.078 130.000		138.478 138.978 140.000	147.878 148.378 110.000		<u>157.778</u> <u>158.278</u> 160.000	ω	167.678 170.000 175.000
	Horizontal	l 1:250		Vertical	1:250																										

CLIENT

DEVELOPMENT APPLICATION CIVIL WORKS PLANS

PROPOSED MHE DE 110 & 120 CARRS DR YAMBA, NSW 2464 LOT 2 DP733507 & I

PROJECT

EVELOPMENT	DA CIVIL DRAV	WING
RIVE	DRAWING TITLE: EARTHWORKS SECTIONS	S - SHEET 3 OF 3
LOT 32 DP128863	DWG No: D17	SHEET: 17 OF 43 REV: 1

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

APPENDIX B – PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT

REPORT ON

PRFELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED MANUFACTURED HOUSING ESTATE AT

CARRS DRIVE, YAMBA, NSW

DESCRIBED AS LOT 2 ON DP 733507

PREPARED FOR

CLIFTON YAMBA LANDPTY LTD

ATF YAMBA LAND TRUST

PROJECT REF: GI 5952-b

DATE: 20 MAY 2022

Geotech Investigations Pty Ltd ACN:154555478 OFFICE: Unit 3 / 42 Machinery Drive Tweed Heads South NSW 2486 POSTAL: PO Box 6885 Tweed Heads South NSW 2486

P: 07 5523 3979 F: 07 5523 3981 E: admin@geotechinvestigations.com www.geotechinvestigations.com

Document Details

Project Number	GI 5952					
Depart Title	Report on Preliminary Geotechnical Investigation					
Report Title	Proposed Manufactured Housing Estate					
Site Address	Carrs Road, Yamba, NSW described as Lot 2 on DP 733507					
Prepared for	Clifton Yamba Land Pty Ltd ATF Yamba Land Trust					

Revision	Date	Prepared By	Checked by	Approved for Issue			
Final	7/7/21	A O'Carroll	J Walle	J Walle			
Revision A	20/05/22	J Walle		J Walle			

Report Distribution

Revision	Recipient	Method
Final	Richard Volpe chesney@cliftonlifestyle.com.au	Email
Final	Andrew Smith andrew@md-engineer.com.au	
Revision A	Andrew Smith andrew@md-engineer.com.au	Email

This document was prepared in accordance with the scope of services described in Geotech Investigations Pty Ltd proposal and trading conditions as agreed with the client. This report is issued for the specific client, project and purpose(s) as described in the report, and should not be used or relied upon for other projects or purposes on the site or other sites.

The undersigned, for and on behalf of Geotechnical Investigations Pty Ltd, confirm that this document and all attached drawings, logs, and test results prepared by Geotech Investigations Pty Ltd have been checked and reviewed for errors, omissions and inaccuracies.

Yours faithfully For and on behalf of Geotech Investigations Pty Ltd

<u>Andrew O'Carroll</u> BEng (Civil), Geotechnical Engineer

James Walle RPEQ (15701), RPEng (Civil), BEng (Civil) Senior Geotechnical Engineer

TABLE OF CONTENTS

1.	ΙΝΤΙ	RODUCTION1
1	1	Scope of Works1
2.	PRO	POSED DEVELOPMENT1
3.	SITE	DESCRIPTION2
4.	FIEL	D WORK METHODOLOGY3
5.	GEC	DTECHNICAL CONDITIONS
5	5.1	Regional Geology4
5	5.2	Subsurface Conditions
5	5.3	Groundwater5
6.	RES	ULTS AND RECOMMENDATIONS5
6	5.1	Key Geotechnical Constraints
6	5.2	Earthworks
6	5.3	Temporary and Long Term Batter Slopes7
6	5.4	Site Settlements
6	5.5	Broadscale Foundation Recommendations
7.	LIM	ITS OF INVESTIGATION9
API	PENDI	CES
Арр	pendix	A: Conceptual Site Plans By MDE

- Appendix B: Site Plan SO1
- Appendix C: Borehole Profiles BH 1 to BH 4 Geotechnical Report Standard Notes

DRILLING

1. INTRODUCTION

As requested by Clifton Yamba Land Pty Ltd ATF Yamba Land Trust, Geotech Investigations Pty Ltd (GI) has completed a preliminary geotechnical investigation for the proposed Manufactured Housing Estate at Carrs Road, Yamba, NSW described as Lot 2 on DP 733507.

1.1 Scope of Works

It is understood the purpose of the investigation is to provide a broadscale investigation of the subject site to highlight if any significant geotechnical constraints are likely to be encountered as part of the future development. The report was aimed to assist the proposed owner / developer in their Due Diligence (DD) stage and not provide design advice for the construction / design stage of the development.

The investigation was limited due to access constraints of the majority of the site.

The scope of the geotechnical services provided by GI was directed towards evaluating the following items. The report was to detail information regarding the project, site, and investigation, and provide comments on:-

- 1) General
 - Summary of subsurface conditions, topsoil depths and groundwater.
 - Present results of laboratory tests, if any.
 - Highlight anticipated construction difficulties.
- 2) Earthworks
 - Site preparation required prior to the placement of fill.
 - Topsoil stripping depths.
 - Filling procedures.
 - Comments on soft soils and possible preloading requirements.
- 3) Broadscale Foundation Recommendations
 - Broadscale high-level footing recommendations.
 - Broadscale Typical Site Classification in accordance with AS2870-2011.

2. PROPOSED DEVELOPMENT

The following documents have been provided to GI to assist with the investigation:-

Concept Plan by Manage Design Engineer Pty Ltd (MDE), referenced: Concept Plan DWG No:
 SK03 Rev: 6 dated 12 May 2022, attached as Appendix A.

Based on the concept site plans, refer Figure 1, and discussions with MDE representatives, the proposed development is to include the following:-

- Clearing and preparation of part of the site to allow for bulk filling, mostly towards the eastern half.
- Bulk fill to achieve design levels between RL 3.4 to 3.6 m Australian Height Datum (AHD) indicating up 2 to 2.5 m of fill is required.
- Construction of a 'Riparian Corridor' (20 m in width) entering the central portion of the eastern front boundary and traversing towards the western boundary.
- A series of internal roads and entrances will be required as part of the development along with associated Civil infrastructure.

- The construction of lightly loaded, typically single level residential type buildings.

Figure 1 – Concept Site Plan

3. SITE DESCRIPTION

The subject site which is approximately 16 ha in overall area is located on the western side of Carrs Drive, approximately 1.2 km south of the intersection with Yamba Road. The site and surrounds are typically low-lying alluvial floodplains with the western boundary backing onto Oyster Channel, forming part of the tributaries of the Clarence River.

The majority of the site is covered with vegetation consisting recent regrowth and some matured trees, shrubs and grasses. The eastern area abutting the road frontage comprised maintained grass with an existing dwelling and gardens.

Drainage was considered poor across the majority of areas observed during the site investigations.

Pictures of the site are shown below in Figures 2 to 4.

Figure 2: Looking west to existing dwelling

Figure 3: Looking south along the front eastern Figure 4: Looking north along the front eastern boundary

boundary

FIELD WORK METHODOLOGY 4.

Fieldwork was initially undertaken on the 1st July 2021, and comprised the drilling and sampling of two (2) boreholes, designated BH 1 to BH 2, using a vehicle mounted auger rig using spiral flight auguring techniques to termination between 2.8 m. Dynamic Cone Penetrometer tests (DCPs) were completed adjacent to each borehole to provide an estimate of the relative density of the sands encountered.

Additional fieldwork was then undertaken on the 6th and 7th of July 2021 and comprised the drilling and sampling of two (2) deep boreholes, designated BH 3 to BH 4. The boreholes were carried out using a truck mounted hydraulic drilling rig with spiral flight auguring techniques to approximately 1.5 m depth, then mud circulation drilling to the terminated depths between 10.9 m and 12.4 m. Standard Penetrometer Tests (SPTs) were completed within each borehole to provide an estimate of the relative density of the sands encountered. The approximate locations of the boreholes are shown on the attached Site Plan S01 in Appendix B along with GPS co-ordinates provided on the attached engineering logs in Appendix C.

This investigation has been carried out in accordance with AS $1726 - 2017^1$ in terms of soil description, with the fieldwork supervised by an experienced geotechnical engineer, who positioned and logged the boreholes. At the completion of drilling, the boreholes were backfilled with drill spoil.

5. GEOTECHNICAL CONDITIONS

5.1 Regional Geology

The Geological Survey of NSW, 1:100,000 series Grafton Area shows the site to be located over quaternary aged Pleistocene tidal-delta Plains, which typically comprise *'silt, sands, shells, indurated sands and minor clays'*.

5.2 Subsurface Conditions

The results of the fieldwork are summarised in Table 1 below with more detailed descriptions presented on the Engineering Logs attached in Appendix C, along with explanatory notes.

	1			
Material Descriptions	BH 1 (m)	BH 2 (m)	BH 3 (m)	BH 4 (m)
Alluvial "Topsoil" ⁽¹⁾				
- Sandy CLAY	0 to 0.2	0 to 0.3	0 to 0.2	NE
Alluvial				
- Firm / stiff CLAY	0.2 to 0.3	0.3 to 0.5	0.2 to 0.3	NE
- Loose or worse (SPT 'N' < 10) SAND	2.3 to 2.8	1.0 to 2.8	1.0 to 5.5	0 to 5.4
- Medium Dense (SPT 10 < 'N' < 30) SAND	0.3 to 2.3	0.5 to 1.0	0.3 to 1.0	5.4 to 7.0
	NE	NE	5.5 to 11.1	NE
- Dense (SPT 30 < 'N' < 50) SAND	NE	NE	11.1 to 12.4	NE
- Very Dense (SPT 'N' > 50) SAND	NE	NE	NE	7.0 to 10.9
Terminated Depth (m)	2.8	2.8	12.4	10.9

Table 1: Summary of Subsurface Conditions (depth below existing surface level)⁽²⁾

Notes: NE – Not Encountered (1) Topsoil is described as soils containing vegetation

(2) Strengths were estimated and guessed in some occasions, refer to engineering logs for more details.

¹ Australian Standard AS 1726-2017 'Geotechnical site investigations', Standards Australia

5.3 Groundwater

Groundwater seepage was observed during augering at depths between 0.5 m and 1.2 m below the existing surface levels, as detailed below in Table 2.

Table 2: Summary of Subsurface Conditions (depth below existing surface level)

Groundwater	BH 1 (m)	BH 2 (m)	BH 3 (m)	BH 4 (m)
Depth Below Surface Level	0.6	0.5	0.6	1.2

It should be noted that groundwater is affected by climatic conditions, soil permeability and tidal effects, and will therefore vary over time. Where groundwater is critical, it is suggested that a groundwater monitoring well be installed, and levels monitored over a period of time to identify variations prior to excavations.

6. **RESULTS AND RECOMMENDATIONS**

6.1 Key Geotechnical Constraints

Some of the key geotechnical constraints outlined within this report are summarised below:-

- Ground preparation works.
- The presence of shallow groundwater.
- Site trafficability.
- Variable depth of existing topsoil.

6.2 Earthworks

6.2.1 Summary of Earthworks

Earthworks are understood to involve:-

- Clearing and preparation of the front 450 m (approximately) of the site to allow for bulk filling to achieve estimated design levels of up to RL 3.6 m AHD. This will require bulk fill of up to about 2 to 2.5 m. Should additional earthworks of greater than +/- 1 m be proposed, this office must be contacted to provide further advice.
- Construction of a 'Riparian Corridor' (20 m in width). Although details are not known, it is anticipated that the corridor will comprise excavations and some surface batter shaping.
- A series of internal roads and entrances will be required as part of the development along with associated Civil infrastructure.

6.2.2 Topsoil Stripping and Subgrade Preparation

Based on the recent boreholes completed by GI, the stripping depth over the site will typically be in the order of 100 to 200 mm. The variation will result from a combination of surface vegetation and

GEOTECHNICAL

in particular the root regrowth of the specific plants / trees, drainage and the weather conditions prior to the site strip.

It was noted and observed during the investigations that an alluvial soft to firm clay layer typically between 100 mm and 500 mm in thickness is located below the organic type topsoil. In conjunction with the shallow water table encountered, it is anticipated that the exposed alluvial clay layer will not be suitable to pass a 'test roll' and cause trafficability issues during construction. Therefore, GI suggests that a 'bridging layer' be considered over the alluvial clay layer as part of the earthwork's methodology, as detailed below in Section 6.2.3. This will have both environmental and cost benefits by reducing the extent of disturbance to the natural ground and limiting both the export and import volumes of structural fill required.

Furthermore, haul roads and areas of high plant traffic (i.e. turn-around and egress / ingress areas) will most likely require a crushed rock or similar layer placed to assist with high traffic movement on the exposed clay.

6.2.3 Bulk Filling Operations

Generally, all earthworks are to be carried out in accordance with AS $3798 - 2007^2$. The following earthworks procedures can be used as a preliminary guide for placing fill to support the bulk fill:-

- Following clearing and grubbing, strip site of organic / deleterious materials. Any building remnants or uncontrolled fill also will be required to be stripped.

HOLD POINT # 1: Strip inspection required by GI.

- Placement and compaction of a 500 mm layer of clean sand material spanning the alluvial clay subgrade.
- **HOLD POINT # 2:** A test roll completed on the 'bridging layer' in the presence of a suitably qualified Geotechnical Engineer prior to additional fill being placed which will identify any further weak spots.
- Fill material should comprise similar properties to the site's natural soils and surrounding environment, hence it is recommended that clean cohesionless sands are used as bulk fill materials. This can often be more expensive upfront, however construction costs of placement (thicker layers) and compaction along with foundation costs of the houses / structures can often offset these initial costs and should be considered where possible. Alternative fill materials can be considered and specified by the design engineer.
- Fill material should be placed in layers not exceeding 250 mm loose thickness, however is dependent on fill material and compaction equipment. Typically for residential type developments in accordance with AS 3798, non-cohesionless material should be compacted to achieve a minimum 95% Maximum Dry Density (MDD) based on the Standard compaction

² Australian Standard AS 3798-2007 'Guidelines on earthworks for residential and commercial developments', Standards Australia

GEOTECHNICAL

test and material moisture controlled to within +/- 2% of Optimum Moisture Content (OMC) and cohesionless material compacted to 70 % Density Index or 98 % standard compaction.

- Compaction should be tested as per AS 3798 2007 Table 8.1 by a NATA accredited soils laboratory.
- All fill must be inspected and tested in accordance with Level 1 guidelines as set out in AS 3798.
- 6.2.4 Groundwater Control

As identified above in Section 5.3, groundwater seepage and anticipated standing groundwater was encountered at shallow depths (i.e. typically around 0.6 m depth below existing surface levels).

The groundwater will rise and fluctuate depending on tidal influences and rain events at the site and it is expected that the groundwater could rise to surface level at times of flooding, which needs to be considered in both the detailed design and construction phase of the project. The activities and problems associated with groundwater include:-

- Where excavations (such as service trenches) are proposed to extend near or below the water table, suitable methods of excavation and localised dewatering needs to be considered.
- Temporary retention (such as 'shore-boxes') will be required where excavations of the groundwater is required.
- Fill placement in areas within 0.5 to 1.0 m of the groundwater (at the time of placement).
 Fill areas may pump the groundwater into the placed fill causing heaving and compaction difficulties.

6.3 Temporary and Long Term Batter Slopes

The riparian zone is anticipated to be positioned at the 'natural' surface level (i.e. requiring no new fill), with long term batter slopes anticipated. Long term batter slopes of the 'controlled' fill sands above the ground water should be sloped at 1V:4H minimum for a maximum vertical height of 3 m. Steeper batter slopes for various fill materials can be considered.

Some slumping and erosion of the batter face may occur and to minimise this risk, compaction must extend past the final batter slope and be trimmed back to compacted material. The batter must also be protected from erosion with scour protection using suitable vegetation.

Temporary batter slopes (1 week in dry conditions) of the bulk fill and natural soils above the ground water may be based on 1V:1H for a maximum vertical height of 1.5 m. GI must be notified for any deeper trench excavations.

6.4 Site Settlements

Based on the subsurface investigation, the development area is underlain with a thin layer of clay and very loose to loose sands grading to medium dense then dense (or better) sands extending to approximately 10.9 to 12.4 m depth where the deeper boreholes were terminated. The upper stratum comprised a medium dense alluvial sand layer in some of the boreholes, however this was subject to variation between the testing locations.

Settlements of sands is relatively immediate as a result of surcharge loads. Considering the depth of fill to be placed over the site, the resultant settlements of the underlying alluvial sands would be considered negligible (less than 20 to 30 mm). These settlements will occur as the layers of fill surcharge is placed and will not impact the developments infrastructure or future structures. The fill material type / quality and compaction effort of the fill material will have some impact on these structures and will need to be considered in the design. GI can be contacted for further advice if required.

6.5 Broadscale Foundation Recommendations

6.5.1 Broadscale Indicative Shrink-Swell Movements and Site Classification

Following the placement of fill material, the allotments will be classified as **'Class P'** in accordance with the provisions of AS 2870. However, as the proposed new fill material is to be placed and compacted as 'controlled' fill, the sites may be reclassified.

A Site Classification is provided to allow the determination of appropriate footing sizes and slab details to be designed, and is based on the soil profile, the soil reactivity, and the climatic conditions at the site. The soil profile is identified by the site investigation drilling and in-situ testing, while the soil reactivity is determined from laboratory testing to provide the Shrink-Swell Index (I_{ss}). On the majority of sites, this information is used to calculate the characteristic surface movement (y_s), which is an estimation of the amount of movement at the surface of the site, subject to normal seasonal wetting and drying.

Following the proposed bulk earthworks, the subsurface materials will likely comprise recently placed **clean sand fill** (i.e. inert materials), and as such, shrink-swell movements will be minimal. Considering potential settlements due to self-weight of the fill and the surcharge from the individual dwellings, the allotments will most likely be reclassified as 'Class S' (slightly reactive) or 'Class M' (moderately reactive) in accordance with AS 2870. Additional geotechnical investigations will be required following the completion of the 'controlled' fill building platform/s.

Our Ref: AOC:jw: GI 5952-b

6.5.2 Indicative High-Level Footings

Generally, provided the new fill has been placed in accordance with Section 6, the preliminary footing design for footings found in the compacted 'controlled' sands may typically be based on an allowable bearing pressure of 100 kPa. However, this will be dependent on the extent of fill material and strength of the underlying alluvial soils following the completion of the earthworks.

Additional geotechnical investigations will be required following the completion of the 'controlled' fill building platform/s for site specific footing recommendations.

7. LIMITS OF INVESTIGATION

This report has been written with the express intent of providing subsurface information for due diligence purposes, or as otherwise directed by the client and/or other members of the consulting team. Sub-surface conditions relevant to construction works should be assessed by contractors who can make interpretation of the factual data provided as engineering logs and test results, and perform any additional tests as necessary for their own purposes.

There are always some variations in sub-surface conditions across a site that cannot be defined even by exhaustive investigation. Hence, it is unlikely that the measurements and values obtained from sampling and testing during the investigation will represent the extremes of conditions which exist within the site.

Should conditions exposed at the site during excavation vary significantly from the interpretation provided in this report, based on the project specific factors cited in the introductory scope of the report, GI must be informed and have the opportunity to review any of the findings of this report.

The investigation was very limited due to the restricted access of a large portion of the site.

Further, sub-surface conditions, including groundwater levels, can change over time. This should be borne in mind, particularly if the report is used after a protracted delay.

APPENDIX A

CONCEPTUAL SITE PLANS BY MDE

ENVIRONMENTAL

DRILLING

SITE PLAN SO1

Form GI 002 Issue 3

APPENDIX C

BOREHOLE PROFILES BH 1 TO BH 4 GEOTECHNICAL REPORT STANDARD NOTES

Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – BOREHOLE PROFILE

		a								GPS:	E:	532118			S: 6742966
CL	IENT:	CLIFTO	N YAMB	a lani	U PTY LTI	U ATF \	amba i	LAND TRUST					BOR	EHOLE	I.D.: BH 1
PR	OJEC	T: NO.1	L20 CAR	RS DRIV	VE, YAMI	BA (LO	T 2 ON I	OP 733507)					JOB	No.: GI	l 5952-a
EQ	UIPN	IENT TY	PE: GT-	10				HOLE DIAN	METER: 110)mm			PAG	E: 10 ⁻	f 1
Method	Water	Depth (m)	Graphic Log				Mat	erial Description			Consistency / Rel. Density	sampie / Test	Comple / Test	DCP Blows / 100mm	Structure and additional observation
AD		-		(C⊦	l) Sandy (CLAY: H	igh plast	icity, Fine sand, \	Vet (w>wp),	Dark grey	F			1 1	ALLUVIUM
								icity, Fine sand, \		Grey		_		1	
		0.5_		(SP	') SAND: F	ine sar	id, Trace	of silt, Wet, Pale	grey		MD			2 2	
	▼	-												3	
		-												3 4	
		-												5	
		1.0_	_	(51	/) Sil+v S/		no cand	Moist, Grey			_			10 10	
		-		(51	ny Sircy Sr		ic sand,	worst, orey						10	
		-												12 10	
		1.5_												10	
		-												8 6	
		-												6	
		20									L			5 3	
		2.0_												3	
		-												3 3	
														3	
		2.5_												3 3	
														4	
														4 4	
		3.0_													
		-													
		3.5_													
		- 5.5													
		-													
		4.0_													
		-													
		4.5_													
BH		RMINA METHOD			– LIMIT			ATION CONSISTENCY / DI		KSTRENCT	н			CVV	PLES / TESTS
AD		Auger	Drilling	EW	Extren	nely	VS	Very Soft	D	Dense		U()		disturbe	d (size in mm)
C MS	5	Casing Mud S	g upport	HW DW	Highly Disting		S F	Soft Firm	VD Fb	Very Dens Friable	se	D BS		turbed k Sample	e
NN	/ILC	Rock C	Coring	MW	Mode	rately	St	Stiff	ELw	Extremely	Low	DCP	Dyr	namic Co	one Penetrometer
RR TC		Rock F Tri Coi		SW F	Slightl [,] Fresh	y	VSt Hd	Very Stiff Hard	VLw Lw	Very Low Low		SPT N			enetrometer Test blows for SPT / 300mm
WE	3	Wash					VL	Very Loose	М	Medium		VS	Var	ne Shear	
		WATER Water Le	evel				L MD	Loose Medium Dense	H VH	High Very High		A PP			e Sample etrometer (kPa)
		Water Se		Logg	ed By:	DAW		Date:	01/07/21		ked By:	AC		Dat	

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – BOREHOLE PROFILE

CLUETC VAMBA LAND PTY LTD ATF WAMBA LAND TRUST BOREHOLE LD: BH 2 PROJECT: NO.120 CARSS DRIVE, YAMBA (LOT 2 ON DP 733307) HOLE DIAMETER: 1008 No.: GI 5992-3 EQUIPMENT TYPE: GT.00 HOLE DIAMETER: 1007 No.: GT 5992-3 EQUIPMENT TYPE: GT 5002-3 0 9											GPS:	E:	532082			S: 6743014	
Colument Type: GT-10 HOLE DIAMETER: 100mm PAGE: 1 of 1 0	CL	IENT:	CLIFTO	IFTON YAMBA LAND PTY LTD ATF YAMBA LAND TRUST										BOR	EHOLE	I.D.: BH 2	
Note O	PR	OJEC	T: NO.1	L20 CAR	RS DRIN	/E, YAMI	BA (LO	T 2 ON [OP 733507)					JOB	No.: GI	l 5952-a	
B Image: C(4) Sandy CLAY: High plasticity, Fine sand, Wet (w-wp), Dark grey F 0.5	EQ	UIPN	IENT TY	PE: GT-	10				HOLE DIAN	METER: 110)mm			PAG	iE: 10	f 1	
0	Method	Water	Depth (m)	Graphic Log				Mat	erial Description			Consistency / Rel. Density	sample / Test	Cample / Tort	DCP Blows / 100mm		ıal
Image: Description of the second s	AD				(CH) Sandy (CLAY: H	ligh plast	icity, Fine sand, \	Wet (w>wp),	Dark grey	F			1	ALLUVIUM	
Image: Description of the second se		-	-		(CH) Sandy (CLAY: H	ligh plast	icity, Fine sand, \	Net (w>wp),	Grey	_			2		
Image: Description of the second problem of the s		•	- 0.5		(SP)) SAND: F	ine sar	nd, Trace	of silt, Wet, Pale	grey		MD			3		
I.0															4		
AD Additional and a state of the state of t			1.0_														
Image: state of the s			-		(SN	1) Silty SA	AND: Fi	ne sand,	Moist, Grey			L					
Image: state of the s			-														
AD 3 3.0_ 3 3.0_ 2.2 2.5_ 2.2 2.5_ 2.2 2.5_ 2.2 3.0_ 2.2 3.0_ 3.3 3.0_ 3.3 3.0_ 4.4 3.0_ 4.4 3.0_ 4.4 3.0_ 4.4 3.0_ 4.4 3.0_ 4.4 4.0_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 4.5_ 5.5_ 5.5_ 7.5_ 5.5_ 7.5_ 5.5_ 7.5_ 5.5_ 7.5_ 5.5_ 7.5_ 5.5_ 7.5_			_												3		
A.0_ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 4			1.5_														
2.0_ 3 2.5_ 2.5_ 2.5_ 2.5_ 2.5_ 2.5_ 3.0_ 3.0_ 3.0_ 3.0_ 3.1 4 3.0_ 4 3.0_ 4 4.0_ 4 - 4.0_ - - -<			_														
2.5			-														
2.5			2.0_												3		
2.5_ 															2		
Image: state of the state			2.5_												2		
A A B A A C C Casing MS Mud Support NMLC Rock Roller VW Volution VS Very Stiff VL Very Stiff <			-												3		
Image: Stress of the system of the syste																	
Jasing			_														
Image: state of the state			-														
Image: state of the system			3.5_														
Image: state of the system			-														
A.5_ -																	
Image: Horizon of the system of the syste			4.0_														
Image: Horizon of the system of the syste			-														
Hard Stress Auger Drilling WEATHERING CONSISTENCY / DENSITY / ROCK STRENGTH SAMPLES / TESTS AD Auger Drilling WEATHERING CONSISTENCY / DENSITY / ROCK STRENGTH SAMPLES / TESTS C Casing HW Highly S Soft VD Very Dense D Disturbed MS Mud Support DW Distinctly F Firm Fb Friable BS Bulk Sample NMLC Rock Coring MW Moderately St Stiff ELw Extremely Low DCP Dynamic Cone Penetrometer RR Rock Roller SW Slightly VSt Very Stiff VLw Very Low SPT Standard Penetrometer Test TC Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vane Shear Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)																	
BH 2 TERMINATED AT 2.8m - LIMIT OF INVESTIGATION METHOD WEATHERING CONSISTENCY / DENSITY / ROCK STRENGTH SAMPLES / TESTS AD Auger Drilling EW Extremely VS Very Soft D Dense U() Undisturbed (size in mm) C Casing HW Highly S Soft VD Very Dense D Disturbed MS Mud Support DW Distinctly F Firm Fb Friable BS Bulk Sample NMLC Rock Coring MW Moderately St Stiff ELw Extremely Low DCP Dynamic Cone Penetrometer RR Rock Roller SW Slightly VSt Very Stiff VLw Very Low SPT Standard Penetrometer Test TC Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vane Shear Water Level MD Medium Dense VH Very High PP			_														
METHOD WEATHERING CONSISTENCY / DENSITY / ROCK STRENGTH SAMPLES / TESTS AD Auger Drilling EW Extremely VS Very Soft D Dense U() Undisturbed (size in mm) C Casing HW Highly S Soft VD Very Dense D Disturbed MS Mud Support DW Distinctly F Firm Fb Friable BS Bulk Sample NMLC Rock Coring MW Moderately St Stiff ELw Extremely Low DCP Dynamic Cone Penetrometer RR Rock Roller Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vare Shear Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)	BH	 2 TF			2.8m	– LIMIT		VESTIG									
C Casing MS HW Highly Distinctly S Soft VD Very Dense D Disturbed MS Mud Support NMLC Rock Coring RR DW Distinctly F Firm Fb Friable BS Bulk Sample RR Rock Roller TC Tri Cone WB SW Slightly VSt Very Stiff VLw Very Low SPT Standard Penetrometer Test WB Wash Bore VL Very Loose M Medium VS Vane Shear WATER L Loose H High A Acid Sulfate Sample Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)										ENSITY / ROC	K STRENGT	H			SAMI	PLES / TESTS	
MS Mud Support DW Distinctly F Firm Fb Friable BS Bulk Sample NMLC Rock Coring MW Moderately St Stiff ELw Extremely Low DCP Dynamic Cone Penetrometer RR Rock Roller SW Slightly VSt Very Stiff VLw Very Low SPT Standard Penetrometer Test TC Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vane Shear WATER L Loose H High A Acid Sulfate Sample Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa))	-	-								0				d (size in mm)	
NMLC Rock Coring RR MW Moderately SW Stiff ELw Extremely Low DCP Dynamic Cone Penetrometer RR Rock Roller SW Slightly VSt Very Stiff VLw Very Low SPT Standard Penetrometer Test TC Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vane Shear WATER L Loose H High A Acid Sulfate Sample Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)		5	-	-		• •					•	C				e	
TC Tri Cone F Fresh Hd Hard Lw Low N Number of blows for SPT / 300mm WB Wash Bore VL Very Loose M Medium VS Vane Shear WATER L Loose H High A Acid Sulfate Sample V Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)	NM	/ILC	Rock C	Coring								Low					
WB Wash Bore VL Very Loose M Medium VS Vane Shear WATER L Loose H High A Acid Sulfate Sample ▼ Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)							У						-				
Water Level MD Medium Dense VH Very High PP Pocket Penetrometer (kPa)					•	110311											
	_										•						
					Logge	ed Bv:	ΠΔ\Λ					ked Bv:				. ,	

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 2486

ENGINEERING LOG – BOREHOLE PROFILE

0		CUITO				GPS:	E:	5321			S: 6742977
				LAND PTY LTD ATF YAMBA LAN							I. D.: BH 3
PF	ROJEC	F: NO.12	20 CARRS	DRIVE, YAMBA (LOT 2 ON DP 7					JOB	No.: GI	5952-A
EC		IENT TY	PE: EXPLO	0RA85	HOLE DIAMETER: 110n	nm	1		PAG	GE: 1 of 3	3
Method	Water	Depth (m)	Graphic Log	Materia	al Description		Consistency / Rel. Density	Jampie / Test	Comple / Tort	DCP Blows / 100mm	Structure and additional observation
AD -		_		(CH) Sandy CLAY: High plasticit	y, Fine sand, Wet (w>wp),	Dark grey					ALLUVIUM
to 1.		_		(CH) Sandy CLAY: High plasticit		Grey					
AD to 1.5 m then MS (RR)		0.5		(SP) SAND: Fine sand, Trace of	slit, wet, Pale grey		MD				
hen	▼	-									
NS (_									
RR)		 1.0									
		_		(SP) SAND: Fine to medium sar	d, Trace of silt, Wet, Pale ۽	grey	L				
		-		mottled grey							
		_ 1.5_									
		_						SPT			
		-						3,2 N:			
		_ 2.0_								-	
		-									
		2.5_									
		-									
		-									
				(SP) SAND: Fine to medium sar throughout, Wet, Pale grey mo		ell grit	VL/L				
								SPT			
		-						1,- N:			
		_ 3.5_								-	
		-									
		-									
		4.0_									
		-									
		-									
		_ 4.5_									
		-						SPT			
		-						-,- N:	,2 =2		
		_ 5.0_									
		J.U_ _									
		-									
		- -									
		5.5_		(SP) SAND: Fine to medium sar	nd, Trace of silt, Wet, Brow	n	MD				

г

-

-

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981

ENGINEERING LOG – BOREHOLE PROFILE

CL	LIENT:	CLIFTON	N YAMBA	LAND PTY LTD ATF YAMBA LAN	ID TRUST			BOR	EHOLE I	. D.: BH 3
PF	ROJEC	T: NO.12	20 CARRS	DRIVE, YAMBA (LOT 2 ON DP 7	JOB No.: GI 5952-A					
EC	QUIPN	IENT TY	PE: EXPLC	PRA85	HOLE DIAMETER: 110mm			PAG	iE: 2 of 3	3
Method	Water	Depth (m)	Graphic Log	Materia	al Description	Consistency / Rel. Density	Sample / Test	-	DCP Blows / 100mm	Structure and additional observation
MS (RR)				(SP) SAND: Fine to medium sar	nd, Trace of silt, Wet, Brown	D	SPT 1,13 N=2 SPT 5,11 N=2 SPT 7,12 N=2 SPT 1 9,17 N=3	7.5 ,13 24 9.0 7,0 17 0.0.5 ,21		ALLUVIUM
		- d Issue 3		mottled orange						

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981

ENGINEERING LOG – BOREHOLE PROFILE

CLIENT: CLIFTON YAMBA LAND PTY LTD ATF Y														BOREHOLE I.D. : BH 3			
PF	ROJEC	T: NO.12	0 CARR	S DRIVI	E, YAMI	BA (LO	T 2 ON D	P 733507)						JOB	No.: GI	5952-A	
EC	QUIPN		PE: EXP	ORA 8	5			HOLE DIAN	/IETER: 110	mm				PAG	E: 3 of	3	
Method	Water	Depth (m)	Graphic Log				Mat	erial Description				Consistency / Rel. Density	Test	Sample /	DCP Blows / 100mm		e and additional servation
MS		11.5_			SAND: tled ora		medium	sand, Trace of sil	t, Wet, Brow	'n		D				ALLUVIU	М
MS (RR)		- - -				inge											
		 12.0															
		-											SPT 1 11,17				
		 12.45											N=4				
		-															
		-															
		-															
		13.0_															
		_															
		13.5_															
		-															
		-															
		14.0_															
		-															
		-															
		14.5_															
		-															
		15.0_															
		-															
		15.5_															
		-															
		16.0_				_											
Bł		ERMINAT METHOD	ED AT		n – LIN ATHERI		1	GATION CONSISTENCY / DE	NSITY / ROC	K STR	ENGTH				SAM	PLES / TEST	S
AD)	Auger D	-	EW	Extre	mely	VS	Very Soft Soft	D	Den	se		U()		disturbe	ed (size in m	
RR M	S	Rock Ro Mud Su	pport	HW DW	Highly Distin	ctly	S F	Firm	VD Fb	Fria			D BS	Bul	turbed k Samp		
NM W	MLC B	Rock Co Wash Bo	-	MW SW	Mode Slight	erately lv	St VSt	Stiff Very Stiff	ELw VLw		emely Lo v Low	ow	DCP SPT			one Penetro enetromete	
		WATER		F	Fresh		Hd Hard Lw Low			Ν	Nur	nber of	blows for S	GPT / 300mm			
	•	Water Lev Water See	epage				VL L	Very Loose Loose	M H	High	1		VS A	Aci		e Sample	
		Partial Los Complete					MD	Medium Dense	VH	<u> </u>	y High		PP	Poc		etrometer	
				Logge	d By:	JW		Date:	06/07/21		Checke	ed By:	AOC		Da	te:	7/7/21

Form GI 003d Issue 3

Unit 3/42 Machinery Drive, Tweed Heads South NSW 2486 Ph: 0755 233 979 Fax: 0755 233 981

ENGINEERING LOG – BOREHOLE PROFILE

						GPS:	E:	5319	12		S: 6743140
CL	IENT:	CLIFTO	N YAMBA	LAND PTY LTD ATF YAMBA LAN	D TRUST				BORE	HOLE I	.D. : BH 4
PR	OJEC	T: NO.1	20 CARRS	DRIVE, YAMBA (LOT 2 ON DP 7	33507)				JOB N	o.: GI	5952-a
EC	UIPN	IENT TY	PE: EXPL	ORA85	HOLE DIAMETER: 110r	nm			PAGE	: 1 of	2
Method	Water	Depth (m)	Graphic Log	Materia	Description		Consistency / Rel. Density		Sample / Test	DCP Blows	Structure and additional observation
AD to 1.5 m then MS (RR)	•	- - 0.5_ - - 1.0_ - -		(SM) Silty SAND: Fine to mediur		1	L				FILL
		1.5_ - - 2.0_ - 2.5_ - - 3.0_		(SP) SAND: Fine sand, Trace of s	ilt, Wet, Pale grey mottled	l grey	L	4,	Γ 1.5 3,3 =6	-	ALLUVIUM
				As above: (SP) SAND: Fine sand, Trace of s	ilt, Wet, Pale brown		VL /L	3, N SP1 1	Г 3.0 1,2 I-3 Г 4.5 ,-,- I=0	-	
		5.5_ _		(SP) SAND: Fine sand, Trace of s	lit, Wet, Pale brown		MD				

 Unit 3/42 Machinery Drive, Tweed Heads South
 NSW
 2486

 Ph: 0755 233 979
 Fax: 0755 233 981
 Fax: 0755 233 981

ENGINEERING LOG – BOREHOLE PROFILE

CL	CLIENT: CLIFTON YAMBA LAND PTY LTD ATF YAMBA LAND TRUST											BORE	HOLE	I.D.: BH 4		
PR	OJEC	T: NO.1	20 CARF	S DRIV	'E, YAMI	BA (LO	T 2 ON D	P 733507)					JOB No.: GI 5952-a			
EC	QUIPN	ΙΕΝΤ ΤΥ	PE: EXP	LORA8	5			HOLE DIAN	METER: 110)mm			PAGE	: 2 of	2	
Method	Water	Depth (m)	Graphic Log				Mate	erial Description			Rel. Density	Consistence	Sample / Test	DCP Blows	Structure and additional observation	
M		_		(SP)	SAND: F	ine sar	nd, Trace	of silt, Wet, Pale	brown		M)			ALLUVIUM	
MS (RR)		6.0_														
												10,	T 6.0 11,16 =27			
		-														
		-														
		7.0_		(SP)	SAND: F	ine sar	nd, Trace	of silt, Wet, Pale	brown		VD)				
		7.5_														
		-											T 7.5			
													27,25 =52			
														-		
		-														
		-														
		-														
		9.0_														
		-											T 9.0 26,29			
		_										N	=55			
		9.5_														
		-														
		-														
		-											Г 10.5			
		10.9											23,31 =54			
BI			ATED A											C ^ • • •		
AD		VETHOD Auger	Drilling	EW	EATHERIN Extren			ONSISTENCY / DI Very Soft	D	Dense		U()	Undi		PLES / TESTS d (size in mm)	
RR		Rock R		HW	Highly			Soft	VD	Very D		D		urbed	-	
MS NN	лLС	Mud Su Rock C		DW MW	Distine Mode			Firm Stiff	Fb ELw	Friable Extren	e nely Low	BS DCP		Sample amic Co	e one Penetrometer	
W		Wash E	•	SW	Slightl		VSt	Very Stiff	VLw	Very L		SPT	Stan	dard Pe	enetrometer Test	
		WATER		F	Fresh			Hard	Lw	Low	m	N			blows for SPT / 300mm	
		Water Le Water Se						Very Loose Loose	M H	Mediu High	IIN	VS A		e Shear Sulfate	e Sample	
»		Partial Lo					MD	Medium Dense	VH	Very H	ligh	PP			etrometer (kPa)	
-	«	Complete	e Loss	Logge	ed By:	JW		Date:	06/07/21	C	hecked By	<i>r</i> : AOC	2	Dat	te: 7/7/21	

SCOPE These standard notes may be of assistance when understanding terms and recommendations given in this report. These notes are for general conditions and not all terms given may be of concern to the report attached. The descriptive terms adopted by Geotech Investigations Pty Ltd are given below and are largely consistent with Australian Standards AS1726-1993 'Geotechnical Site Investigations'.

CLIENT can be described and is limited to the financier of this geotechnical investigation.

LEGALITY and privacy of this document is based on communication between Geotech Investigations Pty Ltd and the client. Unless indicated otherwise the report was prepared specifically for the client involved and for the purposes indicated by the client. Use by any other party for any purpose, or by the client for a different purpose, will result in recommendations becoming invalid and Geotech Investigations Pty Ltd will hold no responsibility for problems which may arise.

GEOTECHNICAL REPORTS are predominantly derived using professional estimates determined from the results of fieldwork, in-situ and laboratory testing and experience from previous investigations in the area, from which geotechnical engineers then formulate an opinion about overall subsurface conditions. The client must be made aware that the investigations are undertaken to ensure minimal site impact using test-pits or small diameter boreholes and soil conditions on-site may vary from those encountered during the investigation.

CLIENTS RESPONSIBILITY to notify this office should there be adjustments in proposed structure/location or inconsistencies with material descriptions given in this report and those encountered on site. Geotech Investigations Pty Ltd is able to provide a range of services from on-site inspections to full project supervision to confirm recommendations given in the report.

CSIRO Publication BTF 18 'Foundation Maintenance and Footing Performance: A Homeowner's Guide' explains how to adequately maintain drainage during and post construction which lies as the responsibility of the client. Suitable drainage ensures recommendations given in this report remain valid.

INVESTIGATION METHODS adopted by Geotech Investigations Pty Ltd are designed to incorporate individual project-specific factors to obtain information on the physical properties of soil and rock around a site to design earthworks and foundations for proposed structures. The following methods of investigation currently adopted by this company are summarised below:-

HAND AUGER – investigations enable field work to be undertaken where access is limited. The materials must have sufficient cohesion to stand unsupported in an unlined borehole and there must be no large cobbles boulders or other obstructions which would prevent rotation of the auger.

TEST-PITS – investigations are carried out with an excavator or backhoe, allowing a visual inspection of sub-surface material in-situ and from samples removed. The limit of investigation is restricted by the reach of the excavator or backhoe.

CONTINUOUS SPIRAL FLIGHT AUGERING TECHNIQUES – investigations are advanced by pushing a 100mm diameter spiral into the sub-surface and withdrawing it at regular intervals to allow sampling or testing as it emerges.

WASH BORING – investigations are advanced by removing the loosened soil from the borehole by a stream of water or drilling mud issuing from the lower end of the wash pipe which is worked up and down or rotated by hand in the borehole. The water or mud carries the soil up the borehole where it overflows at ground level where the soil in suspension is allowed to settle in a pond or tank and the fluid is re-circulated or discharged to waste as required.

NON-CORE ROTARY DRILLING – investigations are advanced using a rotary bit with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from feel and rate of penetration.

ROTARY MUD DRILLING – is carried out as above using mud as support and circulating fluid for the borehole drilling. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling.

CONTINUOUS CORE DRILLING – investigations are carried out in rock material, specimens of rock in the form of cylindrical cores are recovered from the drill holes by the means of core barrel. The core barrel is provided at its lower end with a detachable core bit which carries industrial diamond chips in a matrix of metal. Rotation of the barrel by means of the drill rods causes the core bit to cut an annulus in the rock, the cuttings being washed to the surface by a stream of pumped down the hollow drill rods.

TESTING METHODS adopted by Geotech Investigations Pty Ltd to determine soil properties include but not limited to the following:-

U50 – Undisturbed samples are obtained by inserting a 50mm diameter thin-walled steel tube into the material and withdrawing with a sample of the soil in a moderately undisturbed condition.

PP – Pocket Penetrometer tests are commonly used on thin walled tube samples of cohesive soils to evaluate consistency and approximate unconfined compressive strength of saturated cohesive soils. They may also be used for the same purpose in freshly excavated trenches.

VS – Vane Shear test are commonly used in-situ or on thin walled tube samples of cohesive soils by introducing the vane into the material where the measurement of the undrained shear strength is required. Then the vane is rotated and the torsional force required to cause shearing is calculated.

DCP – Dynamic Cone Penetrometer tests are commonly used in-situ to measure the strength attributes of penetrability and compaction of sub-surface materials.

SPT – Standard Penetration Tests are commonly used to determine the density of granular deposits but are occasionally used in cohesive material as a means of determining strength and also of obtaining a relatively unmixed sample. Samples and results are obtained by driving a 50mm diameter split tube through blows from a slide hammer with a weight of 63.5kg falling through a distance of 760mm. Blow counts are recorded for 150mm intervals with the sum of the number of blows required for the second and third 150mm of penetration is termed the "standard penetration resistance" or the "N-value".

GEOLOGICAL ORIGINS of sub-surface material plays a considerable role in the development of engineering parameters and have been summarised as follows:-

FILL – materials are man made deposits, which may be significantly more variable between test locations than naturally occurring soils.

RESIDUAL – soils are present in a region because of weathering over the geological time scale.

COLLUVIAL – soils have been deposited recently, on the geological time scale, as soils being transported slowly down slope due to gravitational creep.

ALLUVIAL – soils have been deposited recently, on the geological time scale, as water borne materials.

AEOLIAN - soils have been deposited recently, on the geological time scale, as wind borne materials.

SOIL DESCRIPTION is based on an assessment of disturbed samples, as recovered from boreholes and excavations, and from undisturbed materials. Soil descriptions adopted by Geotech Investigations Pty Ltd are largely consistent with AS 1726-2017 'Geotechnical Site Investigation'. Soil types are described according to the predominating particle size and behaviour, qualified by the grading of other particles present on the following bases detailed in Table 1.

COHESIVE SOILS ability to hold moisture known as its liquid limit is the state of a soil when it goes from a solid state to a liquid state described in Table 2

TABLE 1		TABLE 2	
Soil Classification	Particle Size	Descriptive Type	Range of Liquid Limit %
Clay	< 0.002 mm	Of low plasticity	≤ 35
Silt	0.002 – 0.06 mm	Of medium plasticity	> 35 ≤ 50
Sand	0.06 – 2.00 mm	Of high plasticity	> 50
Gravel	2.00 – 60.0 mm		

Furthermore to soil description cohesive soils are described on their strength (assessed in conjunction with penetration tests) and liquid limit. Non-cohesive soil strengths are described by their density index. With descriptions for cohesive and non-cohesive soils summarised in Table 3.

_....

	COHESIVE SOILS	NON-COHESIVE SOILS					
Term	Undrained Shear Strength kPa	Term	Density Index %				
Very soft	≤ 12	Very Loose	≤15				
Soft	> 12 ≤25	Loose	> 15 ≤35				
Firm	> 25 ≤50	Medium Dense	> 35 ≤65				
Stiff	> 50 ≤100	Dense	> 65 ≤85				
Very Stiff	> 100 ≤200	Very Dense	> 85				
Hard	> 200						

Description of terms used to describe material portion are summarised in Table 4.

TABLE 4			
	COARSE GRAINIED SOILS	F	INE GRAINED SOILS
% Fines	Modifier	% Coarse	Modifier
≤ 5	Omit or 'trace'	≤ 15	Omit or 'trace'
> 5 ≤12	Describe as 'with'	> 15 ≤30	Describe as 'with'
> 12	Prefix soil as 'silty/clayey'	> 30	Prefix soil as 'sandy/gravelly'

ROCK DESCRIPTIONS are determined from disturbed samples or specimens collected during field investigations. A rocks presence of defects and the effects of weathering are likely to have a great influence on engineering behaviour.

Rock Material Weathering Classification is summarised in Table 5.

TABLE 5		
Term	Symbol	Definition
Residual Soils	-	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported
Extremely	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it
Weathered Rock		either disintegrates or can be remoulded, in water
Distinctly Weathered Rock	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to decomposition of weathering products in pores
Slightly Weathered	SW	Rock is slightly discoloured but shows little or no change of strength from
Rock		fresh rock
Fresh rock	FR	Rock shows no signs of decomposition or staining

Rock Material Strength Classification is summarised in Table 6.

TABLE 6					
Term	Symbol	Point load index (MPa) I₅50	Field guide to strength		
Extremely Low	EL	≤0.03	Easily remoulded by hand to a material with soil properties		
Very Low	VL	>0.03 ≤0.1	Material crumbles under firm blows with sharp end of pick; of be peeled with knife; too hard to cut a triaxial sample by ha Pieces up to 3cm thick can be broken by finger pressure		
Low	L	>0.1 ≤0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling		
Medium	М	>0.3 ≤1.0	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty		
High	Н	>1.0 ≤3.0	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer		
Very High	VH	>3.0 ≤10	Hand specimen breaks with pick after more than one blow; rock rings under hammer		
Extremely High	EH	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer		

Rock Material Defect Shapes are summarised in Table 7.

Term	Description
Planar The defect does not vary in orientation.	
Curved	The defect has a gradual change in orientation
Undulating	The defect has a wavy surface
Stepped	The defect has one or more well defined steps.
Irregular	The defect has many sharp changes of orientation
Smooth	The defect has a flat even finish
Rough	The defect has a irregular disoriented finish

TABLE 7

Rock Material Texture and Fabric are summarised in Table 8.

TABLE 8			
Geological	Mass	ive	Layered
Description			(Bedded foliate cleaved)
Diagram			
Fabric Type	Effectively homogenous and isotropic. Bulky or equi- dimensional grains uniformly distributed	Effectively homogeneous and isotropic. Elongated	Effective homogeneous with planar anisotropy. Elongated or tabular grains or pores in a layered arrangement

Rock Material Defect Type is summarised in Table 9

TABLE 9		
Term	Definition	Diagram
Bedding	Signifying existence of beds or laminate. Planes dividing sedimentary rocks of the same or different lithology. Structure occurring in granite and similar rocks evident in a tendency to split more or less horizontally to the land surface	
Cross Bedding	Also called cross-lamination or false bedding. The structure commonly present in granular sedimentary rocks, which consists of tabular, irregularly lenticular or wedge-shaped bodies lying essentially parallel to the general stratification and which them selves show pronounced lamination structure in which the laminae are steeply inclined to the general bedding.	
Crushed Seam	A fracture at a more or less acute angle to applied force generally with some pulverized material along its surface	
Joint	A fracture in rock, generally more or less vertical or transverse to bedding, along which no appreciable movement has occurred.	
Parting	A small joint in rock or a layered rock where the tendency of crystals to separate along certain planes that are not true cleavage planes.	
Sheared Zone	A fracture that results from stresses which tend to shear one part of a specimen past the adjacent part	

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

APPENDIX C – ACID SULFATE SOILS MANAGEMENT PLAN

ACID SULFATE SOIL INVESTIGATION AND MANAGEMENT PLAN

Lot 2 DP733507 and Lot 32 DP1280863

110 - 120 Carrs Drive, Yamba, New South Wales

Easterly Point Environmental

July 2023

Precise Environmental Pty Ltd ATF Precise Environmental Unit Trust 7/14 Fremantle Street, Burleigh Heads QLD 4220 T 1300 488 215 P 07 5593 7848 F 07 5593 7020

Correspondence PO Box 4424, Robina Town Centre QLD 4230 **E** mail@preciseenvironmental.com.au

www.preciseenvironmental.com.au

ACN: 118147078 ABN: 9433591125

Report

Precise Environmental Pty Ltd ATF Precise Environmental Unit Trust		Job No:	PE3394.22
Project Manager Chris Butler		Email:	chris@preciseenvironmental.com.au
File reference	PE3394.22_110 - 120 Carrs	Dr_ASSI_v1.1	
Title: Lot 2 DP733507 and Lot 32		5	t Plan Carrs Drive, Yamba, New South Wales
Client Easterly Point Environmental			
Client contact	Hailey Spry		

Distribution

Version Status		Date	Recipient	
1	1 Superseded		Easterly Point Environmental	
1.1	1.1 Final		Easterly Point Environmental	

This document was prepared in accordance with the scope of services described in Precise Environmental's Proposal and Standard Conditions of Engagement, for the sole use of the client, their agents and the relevant regulatory authorities. This document must not be used or copied by other parties without written authorisation from Precise Environmental.

Issuing office

Precise Environmental Pty Ltd ATF Precise Environmental Unit Trust Unit 7 / 14 Fremantle Street, Burleigh Heads, Queensland 4220 Tel. (07) 5593 7848 Fax (07) 5593 7020

siner

Sean Gardiner BSc (Env) Environmental Scientist

Butler

Chris Butler BENVSC DipAppSc MEIANZ, CEnVP (Site Contamination Specialist) Director | Principal Scientist

Table of Contents

1	INTR	ODUCTION	1
	1.1	Project overview	. 1
	1.1.	1 Potential disturbance of ASS	1
	1.2	Objectives	. 1
	1.3	Scope of work	. 1
	1.4	Relevant guidance	2
	1.5	Planning trigger for ASS management	2
	1.6	Limitations	2
2	SITE	CONDITIONS AND ENVIRONMENTAL SETTING	3
	2.1	Site and environmental setting	3
3	GEC	DTECHNICAL INFORMATION	. 5
	3.1	Earthworks	. 5
	3.2	Stripping of topsoil	. 6
	3.3	Bulk filling	. 6
	3.4	Groundwater	. 6
	3.5	Batter slopes	. 6
	3.6	Settlement	. 6
4	ACI	D SULFATE SOIL INVESTIGATION METHODOLOGY	7
	4.1	Soil sampling and analysis	. 7
	4.2	Action criteria	. 7
5	FIELI	D OBSERVATIONS AND LABORATORY RESULTS	9
	5.1	Soil profiles	9
	5.2	Screening results	9
	5.3	Laboratory results	9
	5.3.	1 Fill soil	9
		2 Natural clay soil above the water bearing zone	
		3 Natural sand soil below the water bearing zone	
6	ACI	D SULFATE SOIL MANAGEMENT MEASURES	
	6.1	Responsibility	
	6.2	Stripped surfaces	
	6.3	Temporary ASS stockpiling and treatment areas	
	6.4	Leachate collection and discharge	10
	6.4.	1 Leachate monitoring	11

E

	6.5	Neutralisation treatment	11
	6.5.	1 Bulk excavated and trench excavated soils	11
	6.5.	2 Excavations	12
	6.5.	3 Liming rates	12
	6.6	Verification of neutralisation treatment	12
	6.7	Disposal of surplus acid sulfate soil	13
	6.9	Dewatering and oxidation of ASS	14
7	MO	NITORING	15
	7.1	Visual monitoring of ASS impacts	15
8	REPO	ORTING	16
9	REFE	ERENCES	17
A	PPEND	DIX A – FIGURE	
A	PPEND	DIX B - PROPOSED SUBDIVISION LAYOUT AND PROPERTY REPORTS	
A	PPEND	DIX C – STANDARD OPERATING PROCEDURES	
A	PPENE	DIX D – DATA TABLES	
A	PPENE	DIX E – SOIL PROFILE DESCRIPTIONS	
A	PPEND	DIX G – CROSS SECTION SCHEMATICS	
A	PPEND	DIX H – NSW WASTE CLASSIFICATION GUIDELINES	

1 INTRODUCTION

Precise Environmental (PE) was commissioned by Easterly Point Environmental to conduct and acid sulfate soil investigation (ASSI) and prepare an acid sulfate soil management plan (ASSMP) for the proposed residential subdivision of Lot 2 DP733507 and Lot 32 DP1280863, 110 - 120 Carrs Drive, Yamba, New South Wales.

The current site layout is presented in Appendix A, Figure 1.

1.1 Project overview

The extent of the development is 10 ha and will be restricted to the eastern half of the site which is currently zoned for residential land use (refer Table 1). The western half of the site is zoned as environmental conservation and environmental management and is heavily vegetated. The proposed allotment layout is provided in Appendix B.

The development area will be filled by importing ~ 2.0 - 2.5 m of sand across the development area. Whilst most utility services will be constructed / installed within the imported fill, localised excavations will be required in natural soils at depths < 5 m AHD. The vertical extent of earthworks is expected to be limited to disturbance of natural soils in the top 0.5 - 1.0 m, noting the extent of PE's ASSI was 2.0 - 3.0 m depth.

Lateral extents of the ASSI were limited to areas of the site which could be accessed by a drilling rig. Borehole locations are provided in Appendix A, Figure 1.

1.1.1 Potential disturbance of ASS

ASS occur predominantly on coastal land with elevations generally below 5 m Australian Height Datum (AHD). These soils also occur further inland in saline seepage areas, rivers, lake beds and irrigation channels. Where ASS are present, draw-down of the local water table can expose these soils to oxidising conditions creating acidity and mobilising metals at potentially harmful concentrations.

In such situations, extracted groundwater can be impacted by acidity and dissolved heavy metals at potentially harmful concentrations, and requires appropriate management.

1.2 Objectives

The objectives of the ASSMP are to:

- Summarise acid sulfate soil (ASS) conditions within the development area
- Describe the nature and extents of ASS which may be disturbed and any requirement/s for management.

1.3 Scope of work

To meet the above objectives, the following scope of work was undertaken:

- Detailed site inspection
- Underground service clearance
- Drilling of fifteen boreholes ranging in depth from 2.0 3.0 m depth
- Collection of soil samples at 0.25 m depth intervals in each borehole
- ASS screen testing (pHF and pHFOX) of all recovered soil samples
- Selective chromium reducible sulfur suite (SCR Method 22B) and $S_{\mbox{KCI}}$ analysis based on screen testing results
- Preparation of this ASSI and ASSMP.

1.4 Relevant guidance

The scope of this ASSI and management measures described in this report have been prepared with reference to the Acid Sulfate Soil Manual (ASSMAC 1998). Other guidance information referenced in completing the scope of work included:

- Acid Sulfate Soils Laboratory Methods Guidelines (Ahern et al, 2004)
- Clarence Valley Local Environmental Plan (LEP) 2011

1.5 Planning trigger for ASS management

The <u>NSW Government ePlanning Spatial Viewer</u> maps the site within a Class 2 acid sulfate soil (refer property reports presented in Appendix B). As per section 7.1 of the Clarence Valley LEP development consent is required in Class 2 land where works are carried out below the natural ground surface or where works which will lower the water table.

Section 7.1 states consent must not be granted under this clause for the carrying out of works unless an acid sulfate soils management plan has been prepared for the proposed works in accordance with the Acid Sulfate Soils Manual and has been provided to the consent authority.

1.6 Limitations

The findings of this report are based on the objectives and scope of work outlined above. PE performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties or guarantees, express or implied, are made. Subject to the scope of work, PE's assessment is limited strictly to identifying typical environmental conditions associated with the subject property, and does not include evaluation of any other issues.

This report does not comment on any regulatory obligations based on the findings, for which a legal opinion should be sought. This report relates only to the objectives and scope of work stated, and does not relate to any other works undertaken for the Client. The report and conclusions are based on the information obtained at the time of the assessment. Changes to the subsurface conditions may occur subsequent to the investigation described herein, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

The results of this assessment are based upon site inspection and fieldwork conducted by PE personnel and information provided by the Client. All conclusions regarding the property area are the professional opinions of the PE personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, PE assumes no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of PE, or developments resulting from situations outside the scope of this project.

2 SITE CONDITIONS AND ENVIRONMENTAL SETTING

2.1 Site and environmental setting

Site identification, land use and environmental setting details are provided in Table 1. Key built features within the site are shown in Appendix A, Figure 1.

Aspect	Detail			
Street address	120 Carrs Drive, Yamba, New South Wales.			
Real property description	Lot 2 DP733507 Lot 32 DP1280863			
Total area	16.2 ha	~1.5 ha		
Local Government	Clarence Valley Council (CVC)			
Zoning (CVC)	Eastern half: R1 – General residential			
	R1 – General residential			
	Western half:			
	C2 – Environmental conservation			
	C3 – Environmental management	t		
	The objectives of the general resid	dential zone are to:		
	1. Provide for the housing n	needs of the community		
	2. Provide for a variety of h	iousing types and densities; and		
	 Enable other land uses the to day needs of resident 	hat provide facilities of services to meet the da s		
	The objectives of the environment	tal conservation zone are to:		
	 Protect, manage and re cultural or aesthetic valu 	store areas of high ecological, scientific, les		
	 Prevent development th an adverse effect on the 	at could destroy, damage or otherwise have ose values		
	3. Protect coastal wetlands	s and littoral rainforests		
	4. Protect land affected by sensitive coastal land	y coastal processes and environmentally		
	 Prevent development th affect by coastal proces 	at would adversely affect, or be adversely sses		
	The objectives of the environment	tal management zone are to:		
	 Protect, manage and re cultural or aesthetic valu 	store areas with special ecological, scientific, les		
	 Provide for a limited range adverse effect on those 	ge of development that does not have an values		
		evelopment in geologically hazardous areas so nd other adverse impacts on escarpment area		
	 Ensure that developmen for public services or public 	nt does not unreasonably increase the demand Dic facilities		
	5. Ensure development is n hazards	ot adversely impacted by environmental		
	 Protect prominent hillside riparian areas and water 	es, ridgelines, other major natural features, r catchment areas		
Existing land use and site structures		ial dwelling is located in the southeast corner of Lot		

Table 1. Site and surrounding land details.

Aspect	Detail
	DP733507 formerly contained a shed – anecdotal information supplied by the client indicates the building was demolished after a fire.
Surrounding land uses	North: Earthworks occurring for adjacent residential subdivision South: Low-density rural / residential land East: Low-density rural / residential land West: Oyster Channel – tidal waterbody between Wooloweyah Lagoon and Clarence River
Watercourses	An ephemeral watercourse is mapped in the southeast corner of the site and traverses west parallel to the southern site boundary terminating beyond the west site boundary in Oyster Channel. The ephemeral watercourse will be repurposed as a riparian zone as part of the redevelopment.

3 GEOTECHNICAL INFORMATION

The following sections presents key information derived / summarised from the geotechnical report which will need to be considered as part of the overall management strategy of disturbed ASS within the proposed development. The geotechnical report (GI 2021) was prepared by Geotech Investigations (GI) Pty Ltd on 7 July 2021.

Notwithstanding general limitations of the geotechnical report, it is noted boreholes constructed as part of the investigation were limited to three boreholes adjacent to the residential dwelling in the southeast corner of the site and one adjacent to the western boundary of Lot 32 DP1280863.

A summary of the soil conditions encountered by GI are presented in Table 2. No unconsolidated marine clay sediments were identified.

Material descriptions	BH1 (m)	BH2 (m)	BH3 (m)	BH4 (m)
Alluvial topsoil	0 - 0.2	0 – 0.3	0 – 0.2	NE
Alluvial				
Firm / stiff clay	0.2 – 0.3	0.3 – 0.5	0.2 – 0.3	NE
Loose or worse (SPT 'N' <10) sand	2.3 – 2.8	1.0 – 2.8	1.0 – 5.5	0.0 - 5.4
Medium dense (SPT 10 < 'N' < 30) sand	0.3 – 2.3	0.5 – 1.0	0.3 – 1.0	5.4 - 7.0
	NE	NE	5.5 – 11.1	NE
Dense (SPT 30 < 'N' < 50) sand	NE	NE	11.1 – 12.4	NE
Very dense (SPT 'N' > 50) sand	NE	NE	NE	7.0 – 10.9
Terminated depth	2.8	2.8	12.4	10.9

Table 2. Summary of soil conditions (GI 2021).

Table notes:

NE denotes not encountered

3.1 Earthworks

Earthworks proposed for the proposed development include:

- Site preparation, clearing and grubbing
- Importation of up to 2.0 2.5 m of bulk filling across the site to achieve an estimated design level of up to RL 3.6 m
- Construction of a riparian corridor which is expected to comprise excavation and batter shaping
- Construction of a series of internal roads, entrances, and civil infrastructure.

PE has been advised by the client most civil infrastructure will be constructed within the bulk fill soils, with the exception of deeper utility services such as sewer rising mains, service trenches etc. PE has not been supplied with the proposed civil / utility services plan.

3.2 Stripping of topsoil

Topsoil stripping across the site will be in the order of 100 – 200 mm and will vary according to areas containing surface vegetation, root regrowth, site drainage and weather conditions encountered prior to stripping. Based on the development area of 10 ha there could be up to 20,000 m³ of soil which cannot be reused as structural fill (not including uncontrolled fill encountered within the observed earthen access driveway). The topsoil may be reused onsite for landscaping following neutralisation treatment.

Alluvial soft to firm clays encountered from 100 – 500 mm in thickness below the topsoil in conjunction with the shallow water table won't be suitable to pass a 'test roll' and will cause trafficability issues during construction. Geotech Investigations have suggested importing a bridging layer to minimise the extent of disturbance to the natural ground. Building remnants and uncontrolled fill will also need to be stripped.

3.3 Bulk filling

Following clearing, site preparation and stripping, 500 mm of clean sand material shall be placed and compacted across the alluvial clay subgrade and a test roll completed prior to additional filling. Fill material should contain similar properties to the sites natural soil, and it was therefore recommended that clean cohesionless sand be used as the bulk filling material and should be placed in layers not exceeding 250 mm.

3.4 Groundwater

Groundwater was encountered at shallow depths across the site typically around 0.6 m (this was relatively consistent with PE's findings). Groundwater could rise to surface levels in times of flooding. The geotechnical report states the following relating to groundwater:

- Where excavations such as service trenches are proposed to extend near or below the water table, suitable methods of excavation and localised dewatering need to be considered
- Temporary retention such as shore boxes will be required where excavations of the groundwater is required
- Fill placement in areas within 0.5 1.0 m of the groundwater at the time of placement may pump groundwater into the placed fill causing heaving and compaction difficulties.

3.5 Batter slopes

The riparian zone is expected to be positioned at the natural surface level requiring no new fill and long-term batter slopes. The batter will need to be protected from erosion and scour protection.

3.6 Settlement

Settlement of the underlying alluvial sands at the site are relatively immediate and based on the depth of fill to be placed, settlement of the underlying alluvial sands is considered to be negligible (less than 20 – 30 mm). Settlements will occur as the surcharge layers are placed and will not impact the development infrastructure, or future structures.

4 ACID SULFATE SOIL INVESTIGATION METHODOLOGY

Standard operating procedures upon which the soil collection methods were based are provided in Appendix C.

4.1 Soil sampling and analysis

Fifteen boreholes (BH1 – BH15) were drilled on 12 July 2022 to depths of 2.0 – 3.0 m below ground level (BGL) using a track mounted drill rig with solid stem augers. Locations were selected to provide as much site coverage as possible noting parts of the site were inaccessible due to waterlogged soils / dense vegetation.

Soil samples were collected at 0.25 m intervals ensuring inclusion of distinct changes in soil type. Each sample was sealed in a snap-lock bag with excess air evacuated and stored and transported below 4°C to minimise samples oxidation and degradation. All samples were dispatched to a NATA accredited laboratory under chain of custody documentation for field screening. Select samples were analysed for Chromium Reducible Sulfur suite analysis (S_{CR} - Method 22B) in accordance with Acid Sulfate Soils Laboratory Methods Guidelines (Ahern et al, 2004).

4.2 Action criteria

The Acid Sulfate Soil Manual (ASSMAC, 1998) describes field pH_F / pH_{FOX} test results which indicate potential acid sulfate soils (PASS). Appendix 1 of the Acid Sulfate Soil Manual states that field pH provides a useful quick indication of the likely presence and severity of actual acid sulfate soils. The field pH is a qualitative method only that cannot be used as a substitute for laboratory analysis in the identification of acid sulfate soils for assessment purposes.

The guidelines offer the following information regarding the interpretation of field pH results:

- pH readings of pH ≤ 5 indicates that actual acid sulfate soil are present with the sulfides having been oxidised in the past, resulting in acid soil conditions
- pH values > 4 and < 5.5 are acid and may be the result of some previous or limited oxidation of sulfides, but is not confirmatory of actual acid sulfate soils. Substantial exchangeable / soluble aluminium and hydrogen ions usually exist at these pH values. Other factors such as excessive fertiliser use, organic acids or strong leaching can cause pH >4 - <5.5 units. Field pH alone cannot indicate potential acid sulfate soils as they may be neutral to slightly alkaline when unoxidized
- In order to the for potential acid sulfate soils that contain unoxidized sulfides, peroxide is used to rapidly oxidise the iron sulfides (usually pyrite), resulting in the production of acid with a corresponding drop in pH.

The appropriate criteria, or action thresholds, are the texture-based action criteria from Table 4.4 of the Acid Sulfate Soil Manual (*ASSMAC*. 1998). The action criteria have been developed to determine when management of disturbed acid sulfate soil is required. Soil texture influences the risk associated with a disturbance, due to differences in the rate of oxidation, permeability and potential buffering capacity of the soil. The action criteria are shown in Table 3.

The ASS to be disturbed is >1,000 tonnes and the applicable action criteria is 18 mol. H^+/t .

 Table 3. Texture-based acid sulfate soil action criteria.

Type of Material		Sum of existing and potential acidity				
Type of Material	Approx. clay content (%)	1-1000 tonnes disturbed		>1000 tonnes disturbed		
Texture range (NCST, 2009)		% S-equiv. (oven-dried basis)	mol H⁺/t (oven-dried basis)	% S-equiv. (oven-dried basis)	mol H⁺/t (oven-dried basis)	
Fine Medium to heavy clays and silty clays	> 40	0.1	62			
Medium Sandy loams to light clays	5 - 40	0.06	36	0.03	18	
Coarse Sands - loamy sands, peats	< 5	0.03	18			

5 FIELD OBSERVATIONS AND LABORATORY RESULTS

The following section presents the results of the ASSI and should be read in conjunction with the borehole locations provided in Appendix A, data tables presented in Appendix D, complete soil profile descriptions in Appendix E and laboratory certificates of analysis presented in Appendix F.

5.1 Soil profiles

Fill soils were encountered in BH6, BH8 and BH11 which were drilled in the observed earthen access driveway (refer Appendix A, Figure 1). Fill soil comprised a mix of sand and clay of variable plasticity with silt inclusions to depths of 0.5 – 0.8 m.

With the exception of BH5 which comprised clayey sand and sand, natural soils comprised clay of variable plasticity (light to heavy) with silt and sand inclusions up to 0.95 m depth overlying sand (with some clay and silt inclusions).

Soil profiles were generally consistent with the geotechnical report (GI 2021) although deeper clay profiles were observed in some locations.

Groundwater seepage was observed on the day of works from 0.25 - 1.5 m.

5.2 Screening results

The screening results indicated the presence of PASS on the basis that:

- Most pH_{FOX} results were ≥1 unit less than pH_F results and pH_{FOX} results ≥ 2 units less than pH_F results was common.
- pH_{FOX} results < 3 were common although there did not appear to be any trends between sample depth and results.

5.3 Laboratory results

5.3.1 Fill soil

Net acidity excluding acid neutralising capacity (ANC) in analysed fill soils (applicable to BH6 0.5 – 0.75 m, BH8 0.0 – 0.25 m, BH8 0.25 – 0.5 m and BH11 0.5 – 0.75 m) ranged from 49 – 61 mol. H⁺/tonne and exceeded the 18 mol. H⁺/tonne action criteria). Net acidity in these samples predominantly comprised titratable actual acidity (TAA) ranging from 32 – 45 mol. H⁺ / tonne. Chromium reducible sulfur (potential acidity) was reported at <10 – 16 mol. H⁺ / tonne.

5.3.2 Natural clay soil above the water bearing zone

Net acidity excluding ANC was detected in all analysed natural clay soil samples above the water bearing zone except for BH9 0.5 - 0.75 m. Results ranged from 26 - 138 mol H⁺ / tonne and all results exceeded the action criteria.

Net acidity in these samples predominantly comprised TAA ranging from 9 – 124 mol H * / tonne and potential acidity ranged from <10 – 24 mol H * / tonne.

5.3.3 Natural sand soil below the water bearing zone

Net acidity excluding ANC was detected in all analysed natural sand soils below the water bearing zone. Results ranged from $13 - 142 \text{ mol H}^+$ / tonne and more than 60 % of samples exceeded the action criteria.

Net acidity in these samples predominantly comprised potential acidity ranging from <10 - 139 mol H $^+$ / tonne. TAA ranged from <2 – 15 mol H $^+$ / tonne.

6 ACID SULFATE SOIL MANAGEMENT MEASURES

6.1 Responsibility

The Principal Contractor shall be responsible for ensuring the appropriate management of acid sulfate soil (ASS) as detailed in the document.

6.2 Stripped surfaces

Aglime shall be placed at a rate \geq 5 kg/m² across all surfaces following the stripping and grubbing of topsoil / clay above the water table. Additional aglime shall also be placed around the perimeter of stripped areas daily throughout the earthworks program. This shall be applied in all drainage lines, whether temporary or permanent.

6.3 Temporary ASS stockpiling and treatment areas

Stockpiling of untreated ASS should be minimised by preparing a detailed earthworks strategy that documents the timing of soil volumes to be moved, treatment locations and capacity of specified areas to accept materials.

Excavated ASS which has not been treated and verified must be contained within bunded areas constructed in accordance with relevant design standards and the cross sections presented in Appendix G. These areas will be positioned to mitigate potential runoff and/or stormwater ingress.

A guard layer of aglime shall be placed beneath and over the surface of untreated soils and surrounded by a lime enriched perimeter. The basal layer of aglime shall be at a minimum rate of 5 kg per m² per vertical metre of fill, with 5 kg per m² spread over the stockpile surface.

The recommended maximum time for which soils can be temporarily stockpiled without treatment are presented in Table 4. The total volume of material that is placed in short-term stockpiles should not exceed 20% of a day's total extraction, as immediate treatment should be implemented.

Type of Material			
Texture range (NCST, 2009)	Approx. clay content (%)	Sum of existing and potential acidity	
Fine Medium to heavy clays and silty clays	> 40	3 nights, e.g. a weekend (66 hours)	
Medium Sandy loams to light clays	5 - 40	2 nights (42 hours)	
Coarse Sands to loamy sands and peats	< 5	Overnight (18 hours)	

Table 4. Indicative maximum periods for short term stockpiling of untreated ASS.

6.4 Leachate collection and discharge

Leachate collection drains surrounding the treatment pads will be constructed within bunded areas. Leachate will be directed to a sump or holding ponds for monitoring, and treatment (if required), prior to discharge.

Alternatively, dispersal over land of leachate shall be the preferred method of disposal and shall be conducted in a manner to ensure the leachate does not enter the stormwater network, or adjacent waterways. Where this is not possible leachate must be managed in accordance with an approved Dewatering Management Plan.

Where off-site discharge via dispersal over land is required, or has the potential to occur, water quality monitoring shall be conducted prior to discharge in accordance Section 6.4.1.

6.4.1 Leachate monitoring

Where dewatering is occurring during works involving ASS, leachate generated shall be monitored in accordance with an approved DMP.

In all other cases (i.e. where leachate is generated in collection drains and stored in sumps / holding ponds) surface water quality monitoring shall be undertaken at the locations and frequencies specified in Table 5.

A suitably qualified person shall review the monitoring results. Non-compliance with the water quality objectives shall trigger corrective and preventive action to be determined by a suitably qualified expert (SQE).

Table 5. Water quality monitoring program.

Parameter	Water quality objectives	Location	Frequency
pH (units)	6.5 – 8.5 ^A		
Total suspended solids (mg/L)	≤50 в	Discharge	Prior to release
Dissolved aluminium and iron	-		

Table notes

A. Derived from Acid Sulfate Soils Management Guidelines (ASSMAC 1998)

B. Derived from Soils and construction (NSW Blue Book) Vol. 1 – 4th Edition, March 2004 (NSW Landcom 2004)

Corrective actions shall be implemented in consultation with a SQE to ensure potential impacts of the release on the receiving environment are mitigated.

Monitoring results shall be reviewed by a SQE prior to release and the necessary actions (e.g. water treatment) determined by the SQE. If visual and/or water quality monitoring indicates the production and migration of acidic leachate, additional treatment measures will be implemented as necessary. These measures may include:

- The application of additional neutralising agent (typically agricultural lime) to temporary and permanent stockpiles
- The application of additional neutralising agent (typically agricultural lime) to leachate collection drains and overland flow pathways
- Neutralisation treatment (typically hydrated lime) of surface water contained within the leachate collection tanks or basins.

6.5 Neutralisation treatment

6.5.1 Bulk excavated and trench excavated soils

All bulk excavated soils including topsoil will be treated using conventional neutralisation methods whereby agricultural lime is incorporated homogenously into the material either during the excavation process or on a purpose-built treatment pad/s (Refer Appendix G).

Testing will be undertaken on the treated soil not used as backfill on the day of excavation to verify that the quantity of lime added is sufficient to neutralise the soils net acidity to the standards specified in the Acid Sulfate Soils Laboratory Methods Guidelines (Ahern et al, 2004).

Verification results shall be interpreted by a SQE to assess conformance with the verification performance criteria (Table 2). Material deemed by the SQE to be non-conforming shall be re-treated at the liming rate nominated by the SQE and the verification process repeated.

Treated material may be reused within the development where fit for purpose or disposed of at a licensed landfill (Refer Section 6.7).

6.5.2 Excavations

The geotechnical investigation has not specified the depth of footings for the development as additional investigations are required following placement of compacted fill. Notwithstanding this, no ASS will be disturbed for all civil infrastructure constructed within the compacted fill.

Soils excavated as part of deeper service trenches which penetrate natural soils shall be treated by applying aglime at the nominated liming rate specified in Section 3.4.3 (according to the soil type encountered.

6.5.3 Liming rates

Based on a bulk density (BD) of 1.7 t / m³, agricultural lime (97% pure fine CaCO₃) must be applied to the excavated material as per Table 6. Given the relatively high variability in net acidity between the three main soil types encountered at the site, liming rates have been calculated based on the 95% of net acidity results.

Where material requiring a higher liming rate cannot be separated from material with a lower liming rate then the highest liming applicable to those material types shall be used for neutralisation treatment.

Soil type	Encountered depth	Liming rate minimum (kg / m³)
Uncontrolled fill soils (earthen access driveway - refer Figure 1)	Up to 0.8 m below existing surface level	8.4
Natural clay	Up to 0.95 m below existing surface level	19.2
Natural sand	Generally ≥ 0.5 m below existing surface level	19.2

Table 6. ASS treatment liming rates.

The calculation used to determine the liming rates was:

- 1) Sum of existing acidity + potential acidity (moles H+/t for oven-dried soil)
- 2) divided conversion factor for mol H+/t to kg CaCO³/t (i.e. 19.98)
- 3) multiplied by lime purity factor for 97 % pure aglime (i.e. 100/97, or 1.03)
- 4) multiplied by default bulk density of wet soil (i.e. 1.7 t / m³)
- 5) multiplied by default safety factor of (i.e. 1.5).

Note: Where soil bulk density is likely to vary from the default $(1.7 \text{ t} / \text{m}^3)$, or lime product used has a purity below 97%) lime treatment rates must be modified accordingly.

6.6 Verification of neutralisation treatment

All treated soil shall be verified at a minimum rate of 1 sample / $1,000 \text{ m}^3$ (as required for soils containing acidity concentrations < 142 mol H+/t), or greater where necessary in each batch of soil. Each sample

shall be a composite sample made up of at least 6 sub-samples collected using a random or stratifiedrandom approach.

Chromium suite acid base accounting will be used to verify treated material in accordance with Table A3.6 of the Laboratory Methods Guidelines (Ahern et al. 2004).

The following performance criteria must all be met for soil that has been treated:

- The neutralising capacity of the treated soil must exceed the existing plus potential acidity of the soil by at least a safety factor of 1.5
- Post-neutralisation, the soil pH (pH_{KCI}) is to be > 6.5, and preferably < 8.5
- Excess neutralising agent should stay within the treated soil until all acid generation reactions are complete and the soil has no further capacity to generate acidity.

Interpretation of verification results may consider the following:

Medium and fine textured material (sandy loams, light clays, heavy clays and silty clays):

- 1) No single sample shall exceed a net acidity of $62 \mod H^+/t$.
- 2) If any single sample is between 0 62 mol H+/t, then the average of any four spatially adjacent samples (including the exceeding sample) shall have an average net acidity of zero or less.

Coarse textured material (sands to loamy sands and peats):

- 1) No single sample shall exceed a net acidity of 18 mol H^+/t .
- 2) If any single sample is between 0 18 mol H+/t, then the average of any four spatially adjacent samples (including the exceeding sample) shall have an average net acidity of zero or less.

Poorly buffered sands (see Soil Management Guidelines Table 4.1 and associated commentary):

- 1) No single sample shall exceed a net acidity of 6 mol H+/t.
- 2) If any single sample is between 0 6 mol H+/t, then the average of any four spatially adjacent samples (including the exceeding sample) shall have an average net acidity of zero or less.

6.7 Disposal of surplus acid sulfate soil

Following treatment, material that cannot be re-used within the development site (namely uncontrolled fill and clay topsoil) shall be removed to a landfill licensed to accept ASS in accordance with the NSW Waste Classification Guidelines Part 4: Acid Sulfate Soils (Refer Appendix H).

Dry material shall be kept moist and covered during transport. Wet material shall be of at least 'spadable' consistency or carted in lined containers to minimise potential spillage. Council must be provided with the full details of the facility prior to any material being removed off-site, and other records such as tonnage receipts upon request following disposal.

6.8 Potential displacement and extrusion of ASS due to settlement of materials

The upper unconsolidated natural clay layer and loose underlying sand has the potential to displace and extrude during the bulk filling of the site, and a rise in the groundwater level in the surrounding area. The degree of soil and groundwater movement which will depend on the settlement strategy adopted.

A slow rate (i.e. many years) of compression of unconsolidated material may minimise the environmental risks associated with the oxidation of disturbed ASS. However, this may not be feasible for the site.

The Soil Management Guidelines (2014) state:

Dewatering soils using wick drains is a common management strategy available when sediments need to be compressed and dewatered. Vacuum settlement (also known as vacuum consolidation) methods can potentially be employed to hasten the compression process. Vacuum settlement involves sealing the surface of the soil with an impermeable membrane and then using a preinstalled drainage network to pump air and water out of the soil, rather than waiting for it to compress under load....

Note that where these techniques are employed, extracted water must be treated to meet pH, metals (particularly iron and aluminium) and visual amenity targets prior to discharge, and care must be taken to properly isolate the soil to be dewatered from the surrounding environment.

Note: These techniques do not necessarily provide a clearance layer of non-ASS or fully treated ASS material for future land uses.

Wick drains enable the direct vertical rise and capture of groundwater (typically by a preload perimeter drain) reducing the likelihood of lateral displacement of groundwater and extrusion of ASS.

Where wick drains are not required (e.g. no to limited unconsolidated soils present), then a limestone filled cut-off drain of sufficient depth to neutralise horizontal sub-surface groundwater flow may need to be installed around the fill zone boundaries. Decisions on, and design of, the most appropriate management strategy will be the responsibility of the project geotechnical engineer, in consultation with the SQE.

Groundwater monitoring wells must be installed around the perimeter of the fill area and baseline groundwater conditions assess at these locations. Existing baseline groundwater information shall be incorporated for the wider site where available. There can be no decline in groundwater pH as a result of the filling activities. A groundwater neutralising agent may be required where there is an unacceptable change in pH to mitigate risks to groundwater dependant ecosystems including surfaces waters.

6.9 Dewatering and oxidation of ASS

Excavation methodologies that minimise the extent and duration of dewatering as far as practicable shall be adopted as a primary control measure. All dewatering shall be undertaken in accordance with an approved dewatering management plan.

7 MONITORING

7.1 Visual monitoring of ASS impacts

Regular visual monitoring shall be undertaken to detect:

- Unexplained scalding or degradation of vegetation
- Iron staining
- Green-blue or extremely clear water indicating high concentrations of aluminium.

Any observations of the above shall be reported to the SQE who shall inspect the site and advise appropriate corrective action/s, as required.

8 **REPORTING**

All incidents that have the potential to cause environmental harm shall be immediately reported to Clarence Valley Council. The Site Manager is responsible for liaising with the Principal's Representative to determine the most appropriate communication pathways for reporting such incidents in accordance with the Protection of the Environment Operations (PoEO) Act 1997 and its associated schedules.

The Principal Contractor shall maintain records of the following:

- ASS verification testing
- ASS disposal (volumes, contractor, disposal facility, waste transport certificates)
- Soil and water treatment
- Water quality monitoring
- Incidents
- Corrective and preventive actions.

The records shall be available for inspection on site during the construction phase and maintained for a minimum of 5 years.

9 **REFERENCES**

Ahern, C.R., McElnea, A.E., Sulivan, L.A. 2004. *Acid Sulfate Soils Laboratory Methods Guidelines*. Queensland Department of Natural Resources, Mines and Energy

Stone, Y., Ahern C R., Blunden B., (1998), Acid Sulfate Soil Manual 1998, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia

Clarence Valley Local Environmental Plan 2011, July 2022, New South Wales Government

Gl. 2021. Preliminary Geotechnical Investigation for Proposed Manufactured Housing Estate at Carrs Drive, Yamba, NSW, Described as Lot 2 on DP733507, Geotech Investigatons Pty Ltd, 7 July 2022.

APPENDIX A – FIGURE

APPENDIX B - PROPOSED SUBDIVISION LAYOUT AND PROPERTY REPORTS

		Ether and the tree
	MIL	ES STREET (UNFORMED)
		75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53
5	EXTENT OF DEVELOPMENT	76 80 81 82 83 84 85 86 87 77 95 94 93 92 91 90 89 88 116 115 106 105 96 93 92 91 90 89 88 116 115 106 105 96 93 92 91 90 89 88 94 95 94 93 92 91 90 89 93 92 91 90 89 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 93 92 91 90 91 91 91 91 91 91 91 91 91 91 91 91
198 197 199 196 101 194 102 193 101 194 102 193 11 166 101 194 102 193 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 164 11 184 121 183 186 155 181 154 150 151 151 152 151 152	137 136 135 134 133 132 131 130 129 LOT 127 126 125 124 123	185 184 181 180 177 176 26 23 22 21 20 19 18 17 176 100 100 10 10 15 14 13 EXISTING DWELLING (NOT PART OF DEVELOPMENT) 100 100 10 107 100 10 100 100 110 107 100 100 100 100 100 100 110 107 100 100 100 100 100 100 111 106 100 100 100 100 100 100 100 111 106 100 100 100 100 100 100 100 111 100 100 100 100 100 100 100 100 100 111 100 100 100 100 100 100 100 100 100 111 100 100 100 100 100 100 100 100 100
LOT 1 DP1222612		LOT 7 DP1222612 LOT 6 DP1222612

120 CARRS DRIVE YAMBA 2464

Property Details

Address:120 CARRS DRIVE YAMBA 2464Lot/Section2/-/DP733507/Plan No:CLARENCE VALLEY COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans	Clarence Valley Local Environmental Plan 2011 (pub. 23-12-2011)
Land Zoning	C2 - Environmental Conservation: (pub. 5-11-2021)
	C3 - Environmental Management: (pub. 5-11-2021)
	R1 - General Residential: (pub. 23-12-2011)
Height Of Building	9 m
Floor Space Ratio	NA
Minimum Lot Size	6 ha
Heritage	NA
Land Reservation Acquisition	NA
Foreshore Building Line	NA
Acid Sulfate Soils	Class 2
Local Provisions	Earthworks exclusion area
Urban Release Area	Urban Release Area

120 CARRS DRIVE YAMBA 2464

Greenfield Housing Code Area

Complying Development Code: <u>https://www.planningportal.nsw.gov.au/greenfield-housing-code</u>

Building type: 1-2 storey homes, residential alterations and additions

Development consent authority: Council or accredited certifier

Note: Applications which meet all relevant requirements in the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be approved within 20 days. Exclusions may apply.

https://legislation.nsw.gov.au/#/view/EPI/2008/572/full

Detailed planning information

State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

120 CARRS DRIVE YAMBA 2464

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Allowable Clearing Area (pub. 2-12-2021)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Subject Land (pub. 2-12-2021)
- State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004: Land Application (pub. 25-6-2004)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Subject Land (pub. 6-5-2018)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2 -12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Subject Land (pub. 2-12 -2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy No 65—Design Quality of Residential Apartment Development: Land Application (pub. 26-7-2002)

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

Land near Electrical Infrastructure	This property may be located near electrical infrastructure and could be subject to requirements listed under ISEPP Clause 45. Please contact Essential Energy for more information.
Local Aboriginal Land Council	BIRRIGAN GARGLE
Regional Plan Boundary	North Coast

110 CARRS DRIVE YAMBA 2464

Property Details

Address: Lot/Section /Plan No:

110 CARRS DRIVE YAMBA 2464 32/-/DP1280863

Council:

CLARENCE VALLEY COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans

Heritage

Clarence Valley Local Environmental Plan 2011 (pub. 23-12-2011) R1 - General Residential: (pub. 23-12-2011) Land Zoning Height Of Building 9 m Floor Space Ratio NA Minimum Lot Size NA NA Land Reservation Acquisition NA Foreshore Building Line NA Acid Sulfate Soils Class 2 Urban Release Area Urban Release Area Greenfield Housing Code Area Complying Development Code: https://www.planningportal.nsw.gov.au/greenfield-housing-code Building type: 1-2 storey homes, residential alterations and additions Development consent authority: Council or accredited certifier Note: Applications which meet all relevant requirements in the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be approved within 20 days. Exclusions may apply.

https://legislation.nsw.gov.au/#/view/EPI/2008/572/full

Property Report 110 CARRS DRIVE YAMBA 2464

Detailed planning information

State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Allowable Clearing Area (pub. 2-12-2021)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Subject Land (pub. 2-12-2021)
- State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004: Land Application (pub. 25-6-2004)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Subject Land (pub. 6-5-2018)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2 -12-2021)
- State Environmental Planning Policy (Resilience and Hazards) 2021: Subject Land (pub. 2-12 -2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy No 65—Design Quality of Residential Apartment Development: Land Application (pub. 26-7-2002)

Property Report 110 CARRS DRIVE YAMBA 2464

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

Land near Electrical Infrastructure	This property may be located near electrical infrastructure and could be subject to requirements listed under ISEPP Clause 45. Please contact Essential Energy for more information.
Local Aboriginal Land Council	BIRRIGAN GARGLE
Regional Plan Boundary	North Coast

APPENDIX C - STANDARD OPERATING PROCEDURES

SOP.PROC.001 - SOIL SAMPLING

1 PURPOSE AND SCOPE

This is a standard procedure for the collection of soil samples for environmental assessment. This procedure must be followed to ensure that soil samples are collected in an appropriate and consistent manner, that the soil sampling is appropriate for the media and analytes, and to allow the documentation of standard operating procedures used for soil sample collection and handling.

This procedure has been written for environmental soil sampling of *in situ* and *ex situ* soils and fills for general physical and chemical tests and non-volatile, semi-volatile, and volatile analyses.

2 **DEFINITIONS**

CoC - chain of custody form

OH&S - occupational health and safety

PID - photo-ionisation detector

VOCs - volatile organic compounds

3 **REFERENCES**

Guidance considered in preparing this standard operating procedure included:

- Australian Standard AS 4482.1. 2005. Guide to sampling and investigation of potentially contaminated soil, Part 1 Non-Volatile and semi-volatile compounds
- Australian Standard AS 4482.2. 1999. Guide to sampling and investigation of potentially contaminated soil, Part 2: Volatile substances
- Contaminated Sites: Sampling Design Guidelines. NSW Environmental Protection Authority (EPA 2005)
- National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B (1) Guideline on the Investigation Levels for Soil and Groundwater, National Environment Protection Council Service Corporation (NEPC 2013)

4 GENERAL

Sampling locations and depths should be clearly stated in a sampling analysis quality plan (SAQP) prior to commencement of fieldwork.

A health and safety plan (HSP) should be produced or Safe Work Method Statement induction completed prior to the commencement of any field work.

Soil samples should be representative of the target depth, media and environmental condition from which they are collected. Soil samples should not be influenced by the method of extraction or sampling from the soil.

Soil samples should not be retained if they have come into direct contact with machinery or sampling equipment that has not been decontaminated.

In general samples should be collected at the surface and at depth at regular intervals consistent with the lithology or contaminant transport encountered during the assessment. This may include soil profiles or horizons or areas of contamination or media.

The assessor must record all information on how the samples were taken in the geological log including refusal or exceedance of equipment reach. The geological log should clearly document the reason sampling was discontinued and a description of material if it continues to greater depths.

Surface samples should be 0 - 0.10 m or 0 - 0.15 m and samples from depth should not exceed a depth range of 0.5 m to avoid compositing effects. Some land uses may require shallower surface samples, e.g. banana lands 0.075 m, and this should be established as part of the SAQP.

As a general rule, never composite samples unless stated in the SAQP.

5 PROCEDURE

5.1 Sample collection

All personnel who will come into contact with the soil must always use clean disposable gloves for each sample. Prevention of contamination exposure to personnel and cross-contamination of samples is paramount in soil sampling.

All sampling equipment is to be decontaminated before use and between samples

5.2 Sample collection

Once collected, samples are to be transferred immediately to the appropriate sample container, ensuring that the container is filled to the top so that no head-space remains.

5.3 Hand tools

Hand tools, including spatulas, trowels, shovels, spades, etc, can be used to collect samples from the land surface, walls and floors of test pits or excavations, stockpiles, etc.

The surface to be sampled is first to be cleared of any organic material, e.g. grass and roots, and the sample collected from fresh, exposed soil. Fresh soil should be exposed prior to sampling to remove any smear affects from the sampling equipment. Soil peds or clods should be removed from the auger or trowel and split so that samples can be taken from the middle of the peds or clods. The sampler should not sample from exposed surfaces which may not be representative of contamination, especially where release of volatiles may have occurred from the exposed soil.

Test pits or excavations are not to be entered unless appropriate assessment of stability has been conducted and documented. Test pits over 1 m depth are not to be entered.

5.4 Test pits

The sampler should direct the excavator operator as to where the sample is to be collected and ensure the location is accurate. The sampler must be aware of the 'swing zone' of the machine and follow SOP_PROC_008-Vehicle and heavy machinery operations.

Sampling from excavator buckets is permissible, providing the procedures in Section 5.1 - 5.3 are adhered to by the sampler, where appropriate, and the following sampling quality controls are observed by the sampler:

- The sample must be collected from within soil clods or material which has not contacted the excavator bucket
- The bucket must be screened with a PID prior to sampling where volatiles are a contaminant of concern.

5.5 Soil cores

For push tubes, split spoons, etc, samples should be transferred directly to the sampling container and procedures in Section 5.1 - 5.3 adhered to by the sampler, where appropriate.

5.6 Augers

Samples should be collected from the auger with a trowel by cutting away the outside and collecting soil from the centre of the auger bit. Samples should then be transferred directly to the sampling container. Procedures in Section 5.1 - 5.3 must be adhered to by the sampler, where appropriate.

5.7 Field screening for VOCs

If volatiles are a contaminant of concern and field screening using a photo-ionisation detector (PID) is required, a sample should also be transferred to a snap-lock plastic bag. Refer to SOP_PROC_011- Measurement of volatiles – PIDs for field screening procedure.

5.8 Composite sampling

Composite sampling is used to reduce analytical costs and involves the bulking and thorough mixing of soil samples (collected as above) to form one composite sample for laboratory analysis. Generally, compositing is not encouraged and should only be undertaken if specifically stated in the SAQP. Samples should be sent to the laboratory for compositing with appropriate instructions recorded on the CoC. Composite sampling must not be undertaken where volatile substances are present, including BTEXN compounds and F1 TRHs / TRHs $C_6 - C_9$, or soils that have a high clay content.

Composite samples must be collected from the same soil/fill horizon and no more than four subsamples should be included in a composite sample. The sub-samples should be equal in size, from immediately adjacent sampling points, evenly spaced, and composited laterally.

6 SAMPLE CONTAINERS

Sample containers from a NATA laboratory, usually 125 mL to 250 mL clear glass jars, are to be used by the sampler. This will ensure the jars are decontaminated, clean and dry, and of the appropriate size and material. Ensure the appropriate preservative is present if required, and all jars have a gastight, non-absorptive seal, which allow no headspace. The laboratory should be contacted if numerous and/or specialty analytes are required, to confirm the required sample container type and size.

6.1 Sample labelling

Samples should be labelled clearly on the outside wall of the container with the project number, sampler's initials, sample location, depth of sample and the date. The sample location and depth should also be provided on the container lid. All labelling should be with water proof pens/markers.

The sample location number should be followed by either the sample depth or a letter, e.g. BH1 0.0 - 0.15 or TP3 A.

6.2 Sample handling, storage and dispatch

The soil jars, once filled with sample with no head space, are to be wiped clean and wrapped in bubble wrap/padding, and immediately placed in a cooler such as an Esky. Coolers should be kept out of direct sunlight, hot vehicles, etc, as far as practical, and appropriate cooling media added (ice or ice bricks) to ensure samples are kept below 4°C. For longer term storage, samples should be kept below 4°C in a fridge/freezer.

A chain of custody (CoC) form is to be filled out and the CoC is to be sent with the sample/s to the laboratories. The CoC/s is to be placed in a snap-lock plastic bag or plastic folder to prevent damage. All samples sent to the laboratories are to be included on the CoC/s, and if no analyses required, marked as 'Hold'.

If additional air space exists in the cooler, this should be filled with scrunched up newspaper, bubble wrap or similar to minimise movement of the samples. Coolers are to be secured with heavy tape and security seals, and clearly show the laboratory and sender contact information.

All samples, including QC samples, are to be transported to the primary and secondary laboratories. If dispatch is by courier, coolers are not to be dispatched on Fridays (or days before public holidays) unless delivery the next day has been organised.

If samples cannot be dispatched on the day of sampling with refreshed ice-blocks or ice for transport, then the samples are to be refrigerated until dispatch. The laboratory should be contacted if any delays to dispatch occur to confirm holding times available prior to extraction/analysis.

6.3 Sample location logging

A geological log is to be completed for each sample location by a qualified environmental scientist. Logs are to be completed for all sample locations, including surface samples and *ex situ* samples.

The log is to include:

- Job details, date, location, methods, climatic conditions
- Soil classification (material type and texture), colour, consistency or density, odour, staining, presence of artefacts, moisture content, sample number, and depth
- Depth of water inflow and/or groundwater level, if encountered, and comments regarding water if required; depth of excavation/drilling, excavation/drilling refusal and any field measurements taken or other relevant field observations.

7 QA DOCUMENTATION

A CoC is to be completed for all samples sent to the laboratories and/or to be analysed by the laboratories. Samples not to be analysed should be described as "Hold".

The CoC is to detail laboratory reference numbers (including quotes),site identification, the samplers initials, nature of the sample, collection time and date, analyses to be performed, sample preservation method, any relevant comments, e.g. level contamination expected, level of quality control required and dispatch information and signature.

7.1 QC samples

QC sampling should be documented in the SAQP, which should include trip spikes and trip blanks as prepared by the laboratory and should be organised through the laboratory prior to conducting the field work. Trip spikes and trip blanks should be held for as little time as possible prior to the field work, and should be kept below 4°C in a fridge/freezer. After sample collection, trip spikes and trip blanks are to be handled as a primary sample, and should also be included on the CoC.

APPENDIX D – DATA TABLES

Table A.1: Soil results

12 J	uly 2022		Screen	testing		Chr	omium Redu	ucible Sulfu	^r suite (mol l	l+∕t)
Borehole	Sample depth	pHF	pH _{Fox}	Change	u Keaction Laborat	D Y Ha ory limit of re	buittode Buittratable actual acidity	s. S	Net acidity	Net acidity not including ANC (mol H*/t)
		0.1	0.1	0.1	1	0.1	2	10	10	10
BH1	0	5.9	2.9	3.0	2	5.1	31	12	43	43
BH1	0.25	6.1	3.1	3.0	2	-	-	-	-	-
BH1	0.5	6	4.9	1.1	1	5.8	4	<10	13	13
BH1	0.75	6.3	5.4	0.9	1	-	-	-	-	-
BH1	1	6.1	4.8	1.3	1	5.7	4	<10	13	13
BH1	1.25	5.9	4.5	1.4	1	-	-	-	-	-
BH1	1.5	6.1	1.8	4.3	4	5.4	6	123	129	129
BH1	1.75	6	1.8	4.2	4	-	-	-	-	-
BH1	2	6.3	1.8	4.5	4	-	-	-	-	-
BH1	2.25	6.3	2.3	4.0	4	-	-	-	-	-
BH1	2.5	7.4	2	5.4	4	5.6	4	121	125	125
BH1	2.75	7.7	3.7	4.0	2	-	-		-	-
BH2	0	6.6	3.3	3.3	3	4.9	66	<10	74	74
BH2	0.25	6.6	3.8	2.8	2	-	-	-	-	-
BH2	0.5	6.6	5.1	1.5	1	-	-	-	-	-
BH2	0.75	6.3	4.9	1.4	1	-	-	-	-	-
BH2	1	6.4	4.3	2.1	2	-	-	-	-	-
BH2	1.25	6.3	2.1	4.2	4	-	-	-	-	-
BH2	1.5	6.1	1.8	4.3	4	-	-	-	-	-
BH2	1.75	6.3	2.1	4.2	4	-	-	-	-	-
BH3	0	6.1	2.8	3.3	3	4.5	128	10	138	138
BH3	0.25	6.2	3.6	2.6	2	-	-	-	-	-
BH3	0.5	6.4	4.6	1.8	2	-	-	-	-	-
BH3	0.75	6.4	5	1.4	1	-	-	-	-	-
BH3	1	6.3	4.2	2.1	2	-	-	-	-	-
BH3	1.25	6.3	1.8	4.5	4	-	-		-	-
BH3	1.5	6.4	1.8	4.6	4	-	-		-	-
BH3	1.75	7.1	1.8	5.3	4	-	-		-	-
BH4	0	6.6	2.7	3.9	3	5.4	17	24	41	41
BH4	0.25	6.8	3.2	3.6	3	-	-	-	-	-
BH4	0.5	7.2	4.1	3.1	2	5.8	9	17	26	26
BH4	1	7.2	1.4	5.8	4	5.9	2	139	142	142
вн4	1.25	7.2	1.4	5.6	4	- 5.9	-	-	-	- 142
вн4	1.25	7.2	2	5.0	4	- 5.7	- 3	- 116	- 120	120
вн4	1.75	6.9	1.6	5.3	4	-	-	-	-	- 120
вн4	2	6.8	1.0	4.9	4	-	-	-	-	-
вн4 ВН4	2.25	7.4	1.9	4.9 5.5		- 6		- 94	- 94	- 94
вн4	0	6.5	4.6	5.5 1.9	4	-	<2	- 94	- 94	- 94
BH5	0.5	6.7	5.3	1.4	1	-	-	-	-	-
BH5	0.75	6.4	5.3	1.1	1	-	-	-	-	-
BH5	1	5.6	3.3	2.3	2	-	-	-	-	-
BH5	1.25	5.1	1.8	3.3	4	-	-	-	-	-
BH5	1.5	5	2	3.0	4	-	-	-	-	-
BH5	1.75	5.4	1.8	3.6	4	-	-		-	-
Action criteria - dis	sturbances > 1,000 m ³									18

nd denotes laboratory limits of detection

- denotes not applicable or no criterion

Action criteria applicable to disturbances of untreated soil > 1,000 m³ - Refer Section 4.1 of the Soil Management Guidelines (Dear et. al. 2014).

Performance criteria applicable to soil treated using neutralisation - Refer Section 8.2.1 of the Soil Management Guidelines (Dear et. al. 2014) for allowable variations in net acidity greater than laboratory limit of reporting.

BOLD denotes non-compliance with action / performance criteria.

Table A.2: Soil results

	_
_	

12 J	uly 2022		Screen	testing		Chr	omium Redı İ	ucible Sulfur	suite (mol l	H+/t)
Borehole	Sample depth	Hd	pH _{Fox}	Change	keaction Reaction	U S H T ory limit of re	Titratable actual acidity	s _c	Net acidity	Net acidity not including ANC (mol H*/t)
		0.1	0.1	0.1	1	0.1	2	10	10	10
BH6	0	5.6	2.9	2.7	3	5.3	12	14	26	26
BH6	0.25	5.7	2.6	3.1	3	-	-	-	-	
BH6	0.5	5.6	2.5	3.1	3	4.7	45	16	61	61
BH6	0.75	5.8	3.1	2.7	3	-	-	-	-	-
BH6	1	6.1	4.1	2.0	2	5.2	15	12	27	27
BH6	1.25	5.7	3	2.7	2	-	-	-	-	-
BH6	1.5	6	1.9	4.1	4	5.3	10	88	97	97
BH6	1.75	6.2	1.9	4.4	4	-	-	-	-	-
BH6	2	6.3	2	4.4						
вно	2.25	6.3	2	4.3	4	-	-	-	-	-
BH6	2.5	6.2	2.1	4.1	4	5.4	8	100	108	108
BH6	2.75	5.6	1.8	3.8	4	-	-	-	-	-
BH7	0	5.4	3.5	1.9	3	4.6	106	11	117	117
BH7	0.25	5.8	3.8	2.0	2	-	-	-	-	-
BH7	0.5	5.4	4.7	0.7	2	-	-	-	-	-
BH7	0.75	6	4.6	1.4	2	-	-	-	-	-
BH7	1	5.5	2.1	3.4	4	-	-	-	-	-
BH7	1.25	5.6	1.7	3.9	4	-	-	-	-	-
BH7	1.5	5.9	1.8	4.1	4	-	-	-	-	-
BH7	1.75	6	1.6	4.4	4	-	-	-	-	-
BH8	0	5.7	2.4	3.3	3	4.8	40	<10	49	49
BH8	0.25	5.7	2.9	2.8	3	4.7	44	11	55	55
BH8	0.5	5.8	4.2	1.6	1	5.8	<2	12	12	12
BH8	0.75	5.6	3.6	2.0	1	-	-	-	-	-
BH8	1	5.9	2	3.9	1	-	-	-	-	-
BH8	1.25	6	2.1	3.9	4	-	-	-	-	-
BH8	1.5	5.8	2.3	3.5	4	-	-	-	-	-
BH8	1.75	5.8	2	3.8	4	-	-	-	-	-
BH9	0	5.8	2.4	3.4	3	4.6	79	18	98	98
BH9	0.25	5.9	2.8	3.1	3	-	-	-	-	-
BH9	0.5	6.2	3.8	2.4	1	5.8	<2	<10	<10	<10
BH9	0.75	6.3	4.2	2.1	1	-	-	-	-	-
3H9	1	6.4	2	4.4	1	5.6	3	23	26	26
BH9	1.25	5.6	1.9	3.7	1	-	-	-	-	-
BH9	1.5	5.1	1.8	3.3	1	5.2	7	77	84	84
BH9	1.75	5.2	1.7	3.5	1	-	-	-	-	-
3H10	0	5.4	2.6	2.8	3	4.8	42	14	56	56
BH10	0.25	5.7	3.5	2.2	2	-	-	-	-	-
BH10	0.5	5.4	3	2.4	2	-	-		-	-
BH10	0.75	5.7	2.5	3.2	2	-	-	-	-	-
BH10	1	5.8	2.2	3.6	4	-	-	-	-	-
BH10	1.25	5.7	2.1	3.6	4	-	-	-	-	-
	1.5	5.5	2	3.5	4	-	-	-	-	-
3H10			-		· ·	1	1	1	1	1
3H10 3H10	1.75	5.6	2.3	3.3	4	-	-	-	-	-

nd denotes laboratory limits of detection

- denotes not applicable or no criterion

Action criteria applicable to disturbances of untreated soil > 1,000 m³ - Refer Section 4.1 of the Soil Management Guidelines (Dear et. al. 2014).

Performance criteria applicable to soil treated using neutralisation - Refer Section 8.2.1 of the Soil Management Guidelines (Dear et. al. 2014) for allowable variations in net acidity greater than laboratory limit of reporting.

BOLD denotes non-compliance with action / performance criteria.

Table A.3: Soil results

	_	,
		_

BoreholeSarBH11	0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 2.75 0 0.25 0.5 1.75 1.5 1.75 2.25 2.5 0 0.25 0.5 1.5 1.25 1.125 1.5 1.5 1.5	E 0.1 5.8 5.7 5 5.1 5.5 5.3 5.5 5.3 5.5 5.6 5.7 5.8 5.9 5.9 5.4 5.5 5.7 5.4 5.4 5.4	O.1 2.7 2.8 3 2.5 2.6 2.2 2.1 2 2.2 2.1 2 2.2 2.1 3 4.2 3.6 2 2.1	O.1 3.1 2.9 2.0 2.6 2.9 3.3 3.1 3.2 3.3 2.4 2.6 1.4 1.9 3.9 3.4 3.3	Laborat 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Display 0.1 0.1 6.1 - 5.1 4.8 5.5 - 5.4 - 5.4 - 5.5 - 5.5 - 4.6 -	Performance Provide actual act	10 12 - <10 <10 <10 132 - 132 - 118 - <10 -	Inertify Inertify	10 16 - 39 57 16 - 138 - 138 - 122 - 122 - 74 - 74 - 74 - - 74 - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH15IBH16IBH17IBH17IBH17I	0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.5 0.75 1 1.25 1.25 1.5	0.1 5.8 5.7 5 5.1 5.5 5.6 5.6 5.6 5.7 5.9 5.9 5.4	0.1 2.7 2.8 3 2.5 2.6 2.2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 3 4.2 3.6 2 2 2.2 2.9 3 4.2 3.6 2 2 2	0.1 3.1 2.9 2.0 2.6 2.9 3.3 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	Laborat 1 3 3 3 3 1 4 4 4 4 4 4 4 4 4 2 2 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	O.1 0.1 6.1 5.1 4.8 5.5 - 5.4 - 5.5 - 5.5 - 5.5 - 4.6 - </th <th>2 4 - 32 49 8 - 5 - 4 - 49 8 - 5 - 4 - 66 - - - <th>10 12 - <10 <10 132 - 132 - - 118 - <10 -</th><th>10 16 - 39 57 16 - 138 - - 122 - 74 - 74 - - - - - - - - - - - - -</th><th>10 16 - 39 57 16 - 138 - - 122 - 74 - - 74 - - - - - - - - - - - - -</th></th>	2 4 - 32 49 8 - 5 - 4 - 49 8 - 5 - 4 - 66 - - - <th>10 12 - <10 <10 132 - 132 - - 118 - <10 -</th> <th>10 16 - 39 57 16 - 138 - - 122 - 74 - 74 - - - - - - - - - - - - -</th> <th>10 16 - 39 57 16 - 138 - - 122 - 74 - - 74 - - - - - - - - - - - - -</th>	10 12 - <10 <10 132 - 132 - - 118 - <10 -	10 16 - 39 57 16 - 138 - - 122 - 74 - 74 - - - - - - - - - - - - -	10 16 - 39 57 16 - 138 - - 122 - 74 - - 74 - - - - - - - - - - - - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH15IBH16IBH17IBH17IBH17I	0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.5 0.75 1 1.25 1.25 1.5	5.8 5.7 5 5.1 5.5 5.3 5.2 5.5 5.3 5.4 5.5 5.5 5.3 5.5 5.3 5.6 5.6 5.5 5.5 5.5 5.4	2.7 2.8 3 2.5 2.6 2.2 2.2 2.1 2 2 2 2 2 2 2 2 2 2 3 3 4.2 3.6 2 2 2	3.1 2.9 2.0 2.6 2.9 3.3 3.1 3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	3 3 3 3 1 4 4 4 4 4 4 4 4 2 2 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	6.1 - 5.1 4.8 5.5 - 5.4 - 5.5 - 5.5 - 4.6 - - - - 5.5 - - -	4 - 32 49 8 - 5 - - - 4 - 4 - 4 - 66 - - - - - - - - -	12 - <10 <10 - 132 - - - 118 - <10 - - - - - - - - - - - - - - - - - - -	16 - - 39 57 16 - 138 - - - 122 - 74 - - 74 - - - - - - - - -	16 - 39 57 16 - 138 - - - 122 - 74 - 74 - - - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH14IBH15IBH16IBH17IBH17IBH17I	0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.5 0.75 1 1.25 1.25 1.5	5.7 5 5.1 5.5 5.5 5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.8 3 2.5 2.6 2.2 2.2 2.1 2 2 2.1 2 2 2.2 2.	2.9 2.0 2.6 2.9 3.3 3.1 3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	3 3 3 1 4 4 4 4 4 4 4 4 2 2 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	- 5.1 4.8 5.5 - 5.4 - - 5.5 - 4.6 - - - - - - - -	- 32 49 8 - 5 - - - 4 - 4 - 66 - - - - - - - - - - -	- <10 <10 - 132 - - - 118 - - - - - - - - - - - - - - -	- 39 57 16 - 138 - - 122 - 74 - 74 - 74 - -	- 39 57 16 - 138 - - 122 - 74 - 74 - - 74 - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH13IBH14IBH14I	0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5 5.1 5.5 5.5 5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	3 2.5 2.6 2.2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 3 4.2 3.6 2 2 2.2 2.3.6 2 2 2 3.6 2 2	2.0 2.6 2.9 3.3 3.1 3.1 3.5 3.4 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	3 3 1 4 4 4 4 4 4 4 4 2 2 2 1 1 1 4 4	5.1 4.8 5.5 - 5.4 - - 5.5 - 4.6 - - - - - - -	32 49 8 - 5 - - - 4 - 66 - - - - - - - - -	<10 <10 <10 - 132 - - - 118 - <10 - - - - - - - - - - - - - - - - - - -	39 57 16 - 138 - - 122 - 74 - 74 - - 74 - -	39 57 16 - 138 - - 122 - 74 - 74 - - - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14I	0.75 1 1.25 1.5 1.75 2 2.25 2.75 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.1 5.5 5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.5 2.6 2.2 2.2 2.1 2 2 2 2 2 2 2 2 2 2 2 3 4.2 3.6 2 2 2	2.6 2.9 3.3 3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	3 3 1 4 4 4 4 4 4 4 2 2 2 1 1 1 4 4	4.8 5.5 - 5.4 - - 5.5 - 4.6 - - - - -	49 8 - 5 - - - 4 - 66 - - - - - - -	<10 <10 - 132 - - 118 - <10 - - - - - - - - - - -	57 16 - 138 - - 122 - 74 - 74 - - - - - - - - - - - - -	57 16 - 138 - - 122 - 74 - - - - - - - - - - - - -
BH11BH11BH11BH11BH11BH11BH11BH11BH11BH11BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH12BH13BH14BH14BH14	1 1.25 1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.5 5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.6 2.2 2.2 2.1 2 2 2 2 2 2.2 2.9 3 4.2 3.6 2 2	2.9 3.3 3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	3 1 4 4 4 4 4 4 4 2 2 1 1 1 1 4 4	5.5 - 5.4 - - 5.5 - 4.6 - - - - - -	8 - 5 - - - 4 - 66 - - - - - - -	<10 - 132 - - 118 - <10 - - - - - - - -	16 - 138 - - 122 - 74 - 74 - - - - -	16 - 138 - - 122 - 74 - - - - - - -
BH11IBH11IBH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14I	1.25 1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.5 5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.2 2.2 2.1 2 2 2 2 2 2.2 2.9 3 4.2 3.6 2 2	3.3 3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	1 4 4 4 4 4 4 4 2 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 5.4 - - 5.5 - 4.6 - - - - -	- 5 - - 4 - 66 - - - - - -	- 132 - - 118 - <10 - - - - - -	- 138 - - 122 - 74 - - - - - - -	- 138 - - 122 - 74 - - - - - -
BH11 BH12 BH13 BH14 <t< td=""><td>1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 1.25 1.25 1.5</td><td>5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4</td><td>2.2 2.1 2 2 2 2.2 2.2 2.9 3 4.2 3.6 2 2</td><td>3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4</td><td>4 4 4 4 4 4 2 2 2 1 1 1 4 4</td><td>5.4 - - 5.5 - 4.6 - - - -</td><td>5 - - 4 - 66 - - - - -</td><td>132 - - 118 - <10 - - - - -</td><td>138 - - 122 - 74 - - - - - -</td><td>138 - - 122 - 74 - - - -</td></t<>	1.5 1.75 2 2.25 2.5 2.75 0 0.25 0.5 1.25 1.25 1.5	5.3 5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.2 2.1 2 2 2 2.2 2.2 2.9 3 4.2 3.6 2 2	3.1 3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 4 4 4 4 4 2 2 2 1 1 1 4 4	5.4 - - 5.5 - 4.6 - - - -	5 - - 4 - 66 - - - - -	132 - - 118 - <10 - - - - -	138 - - 122 - 74 - - - - - -	138 - - 122 - 74 - - - -
BH11IBH11IBH11IBH11IBH11IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH12IBH13IBH14IBH14I	1.75 2 2.25 2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.2 5.5 5.4 5.5 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2.1 2 2 2.2 2.9 3 4.2 3.6 2 2	3.1 3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 4 4 4 2 2 1 1 1 4 4	- - 5.5 - 4.6 - - - -	- - 4 - 66 - - - -	- - 118 - <10 - - - -	- - 122 - 74 - - - - -	- - 122 - 74 - - - -
BH11 BH11 BH11 BH11 BH11 BH12 BH13 BH14 BH14 <t< td=""><td>2 2.25 2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5</td><td>5.5 5.4 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4</td><td>2 2 2.2 2.9 3 4.2 3.6 2 2</td><td>3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4</td><td>4 4 4 2 2 1 1 1 4 4</td><td>- 5.5 - 4.6 - - - -</td><td>- - 4 - 66 - - - -</td><td>- - 118 - <10 - - - -</td><td>- 122 - 74 - - - -</td><td>- 122 - 74 - - - -</td></t<>	2 2.25 2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.5 5.4 5.5 5.3 5.6 5.6 5.6 5.5 5.9 5.4	2 2 2.2 2.9 3 4.2 3.6 2 2	3.5 3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 4 4 2 2 1 1 1 4 4	- 5.5 - 4.6 - - - -	- - 4 - 66 - - - -	- - 118 - <10 - - - -	- 122 - 74 - - - -	- 122 - 74 - - - -
BH11 BH11 BH11 BH12 BH13 BH14 BH14 BH14 <td>2.25 2.75 0 0.25 0.5 0.75 1 1.25 1.5</td> <td>5.4 5.5 5.3 5.6 5.6 5.5 5.9 5.4</td> <td>2 2 2.2 2.9 3 4.2 3.6 2 2</td> <td>3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4</td> <td>4 4 2 2 1 1 4 4</td> <td>- 5.5 - 4.6 - - - -</td> <td>- 4 - 66 - - - -</td> <td>- 118 - <10 - - - -</td> <td>- 122 - 74 - - - -</td> <td>- 122 - 74 - - - -</td>	2.25 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.4 5.5 5.3 5.6 5.6 5.5 5.9 5.4	2 2 2.2 2.9 3 4.2 3.6 2 2	3.4 3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 4 2 2 1 1 4 4	- 5.5 - 4.6 - - - -	- 4 - 66 - - - -	- 118 - <10 - - - -	- 122 - 74 - - - -	- 122 - 74 - - - -
BH11 I BH11 I BH12 I BH13 I BH14 I BH14 I	2.5 2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.5 5.5 5.3 5.6 5.6 5.5 5.9 5.4	2 2.2 2.9 3 4.2 3.6 2 2	3.5 3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 4 2 2 1 1 4 4	5.5 - 4.6 - - - -	4 - 66 - - - -	118 - <10 - - - -	122 - 74 - - - -	122 - 74 - - - -
BH11 I BH12 I BH13 I BH14 I <td>2.75 0 0.25 0.5 0.75 1 1.25 1.5</td> <td>5.5 5.3 5.6 5.6 5.5 5.9 5.4</td> <td>2.2 2.9 3 4.2 3.6 2 2</td> <td>3.3 2.4 2.6 1.4 1.9 3.9 3.4</td> <td>4 2 2 1 1 4 4</td> <td>- 4.6 - - -</td> <td>- 66 - - -</td> <td>- <10 - - -</td> <td>- 74 - - -</td> <td>- 74 - - -</td>	2.75 0 0.25 0.5 0.75 1 1.25 1.5	5.5 5.3 5.6 5.6 5.5 5.9 5.4	2.2 2.9 3 4.2 3.6 2 2	3.3 2.4 2.6 1.4 1.9 3.9 3.4	4 2 2 1 1 4 4	- 4.6 - - -	- 66 - - -	- <10 - - -	- 74 - - -	- 74 - - -
BH12 BH13 BH14 BH14	0 0.25 0.5 0.75 1 1.25 1.5	5.3 5.6 5.6 5.5 5.9 5.4	2.9 3 4.2 3.6 2 2	2.4 2.6 1.4 1.9 3.9 3.4	2 2 1 1 4 4	4.6 - - - -	66 - - - -	<10 - - - -	74 - - -	74 - - - -
BH12 BH12 BH12 BH12 BH12 BH12 BH12 BH13 BH14 BH14	0.25 0.5 0.75 1 1.25 1.5	5.6 5.6 5.5 5.9 5.4	3 4.2 3.6 2 2	2.6 1.4 1.9 3.9 3.4	2 1 1 4 4	-	-	-	-	-
BH12 BH12 BH12 BH12 BH12 BH12 BH13 BH14 BH14	0.5 0.75 1 1.25 1.5	5.6 5.5 5.9 5.4	4.2 3.6 2 2	1.4 1.9 3.9 3.4	1 1 4 4	-	-	-	-	-
BH12 BH12 BH12 BH12 BH12 BH13 BH14 BH14	0.75 1 1.25 1.5	5.5 5.9 5.4	3.6 2 2	1.9 3.9 3.4	1 4 4	-	-	-	-	-
BH12 BH12 BH12 BH12 BH13 BH14	1 1.25 1.5	5.9 5.4	2 2	3.9 3.4	4	-	-	-	-	-
BH12 BH12 BH12 BH13 BH14 BH14	1.25 1.5	5.4	2	3.4	4					
BH12 BH12 BH13 BH14 BH14	1.5					-	-	-	-	-
BH12 BH13 BH14		5.4	2.1	3.3	4			-		_
BH13 BH14	1 75				4	-	-	-	-	-
BH13 BH13 BH13 BH13 BH13 BH13 BH13 BH13 BH13 BH14	1.75	5.2	2.1	3.1	4	-	-	-	-	-
BH13 BH13 BH13 BH13 BH13 BH13 BH13 BH14	0	5.3	2.1	3.2	3	4.6	87	<10	96	96
BH13 BH13 BH13 BH13 BH13 BH14	0.25	4.8	2.7	2.1	3	-	-	-	-	-
BH13 BH13 BH13 BH13 BH14 BH14	0.5	6	3	3.0	2	-	-	-	-	-
BH13 BH13 BH13 BH13 BH14	0.75	5.9	3.8	2.1	1	-	-	-	-	-
BH13 BH13 BH13 BH14 BH14 BH14 BH14 BH14 BH14 BH14 BH14	1	6	2.1	3.9	4	-	-	-	-	-
BH13 BH14 BH14 C	1.25	6	2.1	3.9	4	-	-	-	-	-
BH14 BH14	1.5	5.9	2	3.9	4	-	-	-	-	-
BH14	1.75	6	2.1	3.9	4	-	-	-	-	-
	0	5.5	2.8	2.7	3	4.5	124	15	138	138
RH14	0.25	5.6	3.3	2.3	1	-	-	-	-	-
DITI	0.5	5.5	3.6	1.9	1	5.6	4	<10	13	13
BH14	0.75	5.9	3.4	2.5	1	-	-	-	-	-
BH14	1	5.9	2	3.9	4	5.3	7	67	74	74
BH14	1.25	6.2	2	4.2	4	-	-	-	-	-
BH14	1.5	6	2.1	3.9	4	5	11	58	69	69
BH14	1.75	6.1	2	4.1	4	-	-	-	-	-
BH15	0	5.7	3	2.7	3	4.6	108	13	121	121
BH15	0.25	5.6	3.3	2.3	3	-	-	-	-	-
BH15	0.5	6.3	3.6	2.7	1	5.8	4	<10	14	14
BH15	0.75	6.4	4.3	2.1	1	-	-	-	-	-
BH15		6.6	1.9	4.7	1	5.6	4	67	71	71
BH15	1	6.8	2.1	4.7	4	-	-	-		-
BH15	1 1.25	6.9	2	4.9	1	-	-	-	-	-
BH15		0.7	1.9	5.1	1	-	-	-	-	-
Action criteria - disturbanc	1.25	7		Ì						18

nd denotes laboratory limits of detection

- denotes not applicable or no criterion

Action criteria applicable to disturbances of untreated soil > 1,000 m³ - Refer Section 4.1 of the Soil Management Guidelines (Dear et. al. 2014).

Performance criteria applicable to soil treated using neutralisation - Refer Section 8.2.1 of the Soil Management Guidelines (Dear et. al. 2014) for allowable variations in net acidity greater than laboratory limit of reporting.

BOLD denotes non-compliance with action / performance criteria.

12 Jul	12 July 2022						suite (mol H	l+/t)	õ
Borehole	Sample depth	Predominant soil type	Wet	pH-KCI	Titratable actual acidity	S _{cr}	Net acidity	Net acidity not including ANC (mol H ⁺ /t)	Calculated liming rate (kg CaCO $_3$ / m 3)
					Lim	it of repor	ting		cula ³)
				0.1	2	10	10	10	Calcı / m³)
BH6	0.5	Clay - F	No	4.7	45	16	61	61	8.5
BH8	0	Clay - F	No	4.8	40	5	49	49	6.8
BH8	0.25	Clay - F	No	4.7	44	11	55	55	7.7
BH11	0.5	Clay - F	No	5.1	32	5	39	39	5.4
Statistics									
Minimum				4.7	32	5	39	39	5.4
Mean				4.8	40.3	9.3	51.0	51.0	7.1
Median				4.75	42	8	52	52	7.2
Maximum				5.1	45	16	61	61	8.5
95%ile				5.1	44.9	15.3	60.1	60.1	8.4
Standard deviation				0.2	5.9	5.3	9.4	9.4	

Table notes:

Half LOR applied for results less than laboratory detection limits (grey shaded cells)

PE3394.22_110 - 120 Carrs Dr_ASSI data

12 Jul	12 July 2022						Chromium Reducible Sulfur suite (mol H+/t)					
Borehole	Sample depth	Predominant soil type	Wet	pH-KCI	Titratable actual acidity	S _{cr}	Net acidity	Net acidity not including ANC (mol H ⁺ /I)	Calculated liming rate (kg CaCO $_3$ / m 3)			
					Lim	it of repor	ting		licula ³)			
				0.1	2	10	10	10				
BH1	0	Clay - N	No	5.1	31	12	43	43	6.0			
BH4	0	Clay - N	No	5.4	17	24	41	41	5.7			
BH7	0	Clay - N	No	4.6	106	11	117	117	16.3			
BH12	0	Clay - N	No	4.6	66	5	74	74	10.3			
BH13	0	Clay - N	No	4.6	87	5	96	96	13.4			
BH14	0	Clay - N	No	4.5	124	15	138	138	19.2			
BH15	0	Clay - N	No	4.6	108	13	121	121	16.8			
BH2	0	Clay - N	No	4.9	66	5	74	74	10.3			
BH3	0	Clay - N	No	4.5	128	10	138	138	19.2			
BH9	0	Clay - N	No	4.6	79	18	98	98	13.6			
BH10	0	Clay - N	No	4.8	42	14	56	56	7.8			
BH4	0.5	Clay - N	No	5.8	9	17	26	26	3.6			
BH9	0.5	Clay - N	No	5.8	1	5	5	5	0.7			
BH11	0.75	Clay - N	No	4.8	49	5	57	57	7.9			
Statistics												
Minimum				4.5	1	5	5	5	0.7			
Mean				4.9	67.8	11.3	80.1	80.1	11.1			
Median				4.6	66	11	74	74	10.3			
Maximum				5.8	128	24	138	138	19.2			
95%ile				5.8	125.6	20.4	138.0	138.0	19.2			
Standard deviation				0.5	42.7	6.2	42.4	42.4				

Table notes:

Half LOR applied for results less than laboratory detection limits (grey shaded cells)

PE3394.22_110 - 120 Carrs Dr_ASSI data

12 Jul	y 2022			Chr	omium Red	ucible Sulfur	suite (mol H	1+/t)	õ
Borehole	Sample depth	Predominant soil type	Wet	pH-KCI	Titratable actual acidity	Scr	Net acidity	Net acidity not including ANC (mol H ⁺ /t)	Calculated liming rate (kg CaCO ₃ / m ³)
						it of repor	ting		culat ³)
				0.1	2	10	10	10	Cal / m
BH8	0.5	Sand - N	Yes	5.8	1	12	12	12	1.7
BH1	0.5	Sand - N	Yes	5.8	4	5	13	13	1.8
BH14	0.5	Sand - N	Yes	5.6	4	5	13	13	1.8
BH15	0.5	Sand - N	Yes	5.8	4	5	14	14	1.9
BH4	1	Sand - N	Yes	5.9	2	139	142	142	19.8
BH9	1	Sand - N	Yes	5.6	3	23	26	26	3.6
BH11	1	Sand - N	No	5.5	8	5	16	16	2.2
BH14	1	Sand - N	Yes	5.3	7	67	74	74	10.3
BH1	1	Sand - N	Yes	5.7	4	5	13	13	1.8
BH6	1	Sand - N	Yes	5.2	15	12	27	27	3.8
BH15	1	Sand - N	Yes	5.6	4	67	71	71	9.9
BH1	1.5	Sand - N	Yes	5.4	6	123	129	129	17.9
BH4	1.5	Sand - N	Yes	5.7	3	116	120	120	16.7
BH6	1.5	Sand - N	Yes	5.3	10	88	97	97	13.5
BH9	1.5	Sand - N	Yes	5.2	7	77	84	84	11.7
BH11	1.5	Sand - N	Yes	5.4	5	132	138	138	19.2
BH14	1.5	Sand - N	Yes	5	11	58	69	69	9.6
BH4	2.25	Sand - N	Yes	6	1	94	94	94	13.1
BH1	2.5	Sand - N	Yes	5.6	4	121	125	125	17.4
BH6	2.5	Sand - N	Yes	5.4	8	100	108	108	15.0
BH11	2.5	Sand - N	Yes	5.5	4	118	122	122	17.0
Statistics		•		•	•	•	•		
Minimum				5	1	5	13	13	1.8
Mean				5.5	5.7	68.0	74.8	74.8	10.4
Median				5.55	4	72	79	79	11.0
Maximum				6	15	139	142	142	19.8
95%ile				5.9	11.2	132.4	138.2	138.0	19.2
Standard deviation				0.3	3.4	49.8	47.9	47.9	
				1	L	I			

Table notes:

Half LOR applied for results less than laboratory detection limits (grey shaded cells)

E

PE3394.22_110 - 120 Carrs Dr_ASSI data

APPENDIX E – SOIL PROFILE DESCRIPTIONS

P

Table A. Soil profile description and sample analysis logs

Client:		Eastady B	oint Environmental			Site Address:		120 Carrs Dr	ive, Yamba, New	Commenced	12 July 2022			
Cilent.		Lasterry P	ontenvionnentai			Sile Address.		South Wales		Completed:	12 July 2022			
Project:		Acid Sulfa	ate Soil Investigation and Manag	ement Plan		RPD:		Lot 2 DP733 DP1280863	507 and Lot 32	Logged by:	Chris Butler		Key Results	
Project Numbe	er:	PE3394.22	2				Equipment	Гуре:	Track mounted rig solid stem augers	Checked by:	Sean Gardiner			
BOREHOLE	FILL/NATURAL	DEPTH (m)	MATERIAL CLASSIFICATION	MATERIAL CONSTITUENTS	COLOUR	OTHER MATERIALS	SEEPAGE	ODOUR		SAMPLE DEPTH	CHROMIUM SUITE SAMPLE DEPTH	Titratable actual acidity results (mol H ⁺ /t)	S _{cr} (potential acidity)	Net acidity not including ANC (mol H⁺/t)
BH1	Natural	0.0	Sandy Light Clay	Fine to medium grained sand, moist	Brown	Organics	Nil	Nil		- 0.25	0.0 - 0.25	31	12	43
		0.25	Sandy Light to Medium Clay Sand	Fine to medium grainded sand, moist Fine to medium grained, wet	Brown Yellow brown	Trace organics Trace silt	Nil Yes	Nil		6 - 0.5 • 0.75	- 0.5 - 0.75	- 4	- <10	- 13
		0.5	58110	The to medium grained, wet		Trace sin	163	INII		- 1.0	-	-	-	-
						-		-		1.25	1.0 - 1.25	4	<10	13
		1.25	Sand	Fine to medium grained, wet	Grey	Trace silt	Nil	Nil		- 1.5 - 1.75	- 1.5 - 1.75	- 6	- 123	- 129
										j - 2.0	-	-	-	-
										2.25	-	-	-	-
										2.5	- 2.5 - 2.75	- 4	- 121	- 125
										- 3.0	-	-		-
BH2	Natural	3.0	Borehole terminated Silty Medium Clay	Moist	Dark grey	Trace fine grained sand	Nil	Nil	0.0	- 0.25	0.0 - 0.25	66	<10	74
DITZ	Naturai	0.25	Sandy Light to Medium Clay	Fine to medium grained sand, moist	Grey yellow orange	-	Nil	Nil		- 0.23		-	-	-
		0.40	Clayey Sand	Fine to medium grained sand, moist	Grey yellow orange	-	Nil	Nil		-	-	-		
		0.50	Sand Sand	Fine to medium grained, wet Fine to medium grained, wet	Grey Grey	- Trace silt	Yes Nil	Nil		- 0.75 - 1.5	-	-	-	-
		2.0	Borehole terminated	The to medium grained, wet	Giey	Trace sin	INI	INII	1.23	- 1.5	-	_	-	-
BH3	Natural	0.0	Silty Medium Clay	Moist	Dark grey	Trace fine grained sand		Nil		- 0.25	0.0 - 0.25	128	10	138
		0.25	Sandy Medium Clay Sand	Fine to medium grained sand, abundant organics, m Fine grained, wet	oist Grey orange brown mottled Yellow brown	i -	Nil Yes	Nil		6 - 0.5 • 0.75		-	-	-
		0.50	5810	The glaned, wet		-	163	INI		- 1.0	-	-	-	-
										- 1.2	-		-	-
		1.20	Sand	Fine grained, wet	Grey	-	Nil	Nil		- 1.5 - 1.75	-	-		
										- 2.0	-	-	-	-
		2.0	Borehole terminated	·							1			
BH4	Natural	0.0	Sandy Medium Clay	Fine to coarse grained sand, moist to very moist	Brown	-	Nil	Nil		0.25	0.0 - 0.25	17	24	41
		0.5	Sandy Heavy Clay	Fine to medium grained sand, moist	Brown with orange mottles	-	Nil	Nil		0.75	0.5 - 0.75	9	17	26
		0.0	Cille Consel	Fire to people protect condition	Crew		No.	N.17		- 0.9 - 1.25	- 1.0 - 1.25	- 2	- 139	- 142
		0.9	Silty Sand	Fine to coarse grained sand, wet	Grey	-	Yes	Nil		- 1.25 - 1.5	-	-	-	-
										1.75	1.5 - 1.75	3	116	120
										2.25		-		-
										- 2.5	2.25 - 2.5	<2	94	94
DUE	Netwol	3.0	Borehole terminated	Fire to people evoluted conditions	Dademan	1	NB	NB		0.05	1	1		
BH5	Natural	0.0	Clayey Sand Sand	Fine to coarse grained sand, very moist Fine to medium grained, very moist	Dark grey Brown grey with orange	-	Nil	Nil		0.25	-	-	-	-
					mottles					- 0.9	-	-	-	-
		0.9	Sand Sand	Fine to medium grained, wet Fine to medium grained, wet	Brown grey with orange Grey	-	Yes	Nil		- 1.1 - 1.5	-	-	•	-
		1.1	5810	The to medium grained, wet	Gley	-	INII	INII		1.75	-	-	-	-
										- 2.0	-	-		
		3.0	Borehole terminated						2.0 -	2.25	-	-	-	-
BH6	Fill	0.0	Clayey Sand	Fine to medium grained sand, moist	Orange grey brown	-	Nil	Nil		- 0.2	0.0 - 0.2	12	14	26
		0.2	Sandy Light Clay	Fine to medium grained sand, moist	Grey black	-	Nil	Nil		0.75	- 0.5 - 0.75	- 45	- 16	- 61
										- 0.8	-	- 43	-	-
	Natural	0.8	Clayey Sand	Fine to coarse grained sand, wet	Brown grey	-	Yes	Nil		-	-	-		
		1.0	Sand	Fine to coarse grained, wet	Brown grey with orange mottles	-	Nil	Nil		1.25	1.0 - 1.25	- 15	12	27
		1.5	Sand	Fine to coarse grained, wet	Grey	-	Nil	Nil		- 1.75	1.5 - 1.75	10	88	97
										- 2.0	-	-	-	-
										- 2.25	-	-	-	-
										2.75	2.5 - 2.75	8	100	107
									2.75	- 3.0	-	-	-	-
BH7	Natural	3.0	Borehole terminated Sandy silty medium clay	Fine to medium grained sand, moist	Dark brown	-	Nil	Nil	0.0	- 0.25	0.0 - 0.25	106	11	117
5,	indicate and	0.25	Clayey Sand	Fine to coarse grained sand, very moist	Yellow brown	-	Nil	Nil	0.25	ō - 0.4	-	-		-
		0.4	Sand	Fine to coarse grained, wet	Grey yellow brown	-	Yes	Nil		0.75	-	-	-	-
									1.0 -	1.25	-	-	-	-
		1.25	Sand	Fine to coarse grained, wet	Grey	-	Nil	Nil		- 1.5 - 1.75	-	-	-	-
		L								- 1.75	-	-	-	-
DU IO		2.0	Borehole terminated		Ded. a. W. I	-						10	-	
BH8	Fill	0.0	Sandy Light Clay Silty Sandy Heavy Clay	Fine to medium grained sand, moist Fine to medium grained sand, moist	Dark grey with brown mottle Grey with orange mottles	- 25	Nil	Nil		- 0.25	0.0 - 0.25 0.25 - 0.5	40	<10 11	49 55
	Natural	0.5	Sand	Fine to medium grained, wet	Grey	-	Yes	Nil	0.5 -	0.75	0.5 - 0.75	<2	12	12
										1.0	-	-	-	-
										- 1.25 - 1.5	-	-		-
									1.5 -	1.75	-	-	-	-
		2.0	Borehole terminated	1			1	1	1.75	- 2.0	-	-	-	-
L		2.0	BOIEIIOIE LEITIIIIIdied											

Table A. Soil profile description and sample analysis logs

										Commenced	12 July 2022			
Client:		Easterly P	oint Environmental			Site Address:		110 - 120 C New South	arrs Drive, Yamba, Wales	Completed:	12 July 2022	1		
Project:		Acid Sulfa	ate Soil Investigation and Manag	gement Plan		RPD:		Lot 2 DP733 DP1280863	3507 and Lot 32	Logged by:	Chris Butler	-	Key Results	
Project Num	her:	PE3394.22)				Equipment	1	Track mounted rig	Chookod by	Soon Cordinor	-		
BOREHOLE	FILL/NATURAL	DEPTH (m)	MATERIAL CLASSIFICATION	MATERIAL CONSTITUENTS	COLOUR	OTHER MATERIALS	SEEPAGE	ODOUR	solid stem augers	Checked by: SAMPLE DEPTH	Sean Gardiner CHROMIUM SUITE SAMPLE DEPTH	Titratable actual acidity results (mol H ⁺ /t)	S _{cr} (potential acidity)	Net acidity not including ANC (mol H ⁺ /t)
BH9	Natural	0.0	Sandy Light Clay	Fine to medium grained, sand, moist	Dark grey	Trace tree roots and	Nil	Nil		0.25	0.0 - 0.25	79	18	98
		0.25	Sandy Medium Clay	Fine to medium grained sand, moist to very moist	Grey with orange mottles	-	Nil	Nil	0.25	- 0.5	- 0.5 - 0.7	-	- <10	-
		0.7	Sand	Fine to medium grained, wet	Brown	-	Yes	Nil		- 0.7	- 0.5 - 0.7	<2	<10	<10
		1.0	Sand	Fine to medium grained, wet	Grey	Trace of silt	Nil	Nil		1.25	1.0 - 1.25	3	23	26
										- 1.5	-	-	-	-
									1.5 -	- 2.0	1.5 - 1.75	7	77	84
		2.0	Borehole terminated					1	1.75	- 2.0	-	-	-	-
BH10	Natural	0.0	Sandy Light to Medium Clay	Fine to medium grained sand, moist	Dark grey	Trace tree roots	Nil	Nil	0.0 -	0.25	0.0 - 0.25	42	14	56
		0.25	Clayey Sand	Fine to medium grained sand, wet	Grey brown	-	Yes	Nil	0.25		-	-	-	-
		0.4	Sand	Fine to medium grained, wet	Yellow brown	-	Nil	Nil		0.75 - 1.0	-			-
		0.9	Sand	Fine to medium grained, wet	Grey	-	Nil	Nil	1.0 -		-	-	-	-
					-					- 1.5	-	-	-	-
										1.75				-
		2.0	Borehole terminated						1./5	- 2.0	-	-	-	-
BH11	Fill	0.0	Sand	Fine to medium grained, moist	Grey	-	Nil	Nil	0.0 -	0.25	0.0 - 0.25	4	12	16
		0.25	Sandy Light Clay	Fine to medium grained sand, moist	Grey with dark grey mottles	-	Nil	Nil	0.25		-	-	-	-
		0.75	Constallated Olaria	First the second s	Deducer	T			0.5 -		0.5 - 0.75	32	<10	39
	Natural	0.75	Sandy Light Clay Sand	Fine to medium grained sand, moist Fine to medium grained, moist	Dark grey Grey	Trace organics	Nil	Nil	0.75		0.75 - 0.95 1.0 - 1.2	49	<10 <10	57 16
		1.2	Sand	Fine to medium grained, moist	Light grey	-	Nil	Nil		- 1.5	-	-	-	-
		1.5	Sand	Fine to medium grained, wet	Light grey	-	Yes	Nil	1.5 -		1.5 - 1.75	5	132	138
										- 2.0	-	-	-	-
									2.0 -	2.25	-	-		-
										2.75	2.5 - 2.75	4	118	122
									2.75	- 3.0	-	-	-	-
BH12	Natural	3.0 0.0	Borehole terminated Silty Medium Clay		Brown	Moderate organics	Nil	Nil	0.0	0.25	0.0 - 0.25	66	<10	74
DHIZ	Natura	0.25	Sand	Fine to coarse grained, wet	Brown	-	Yes	Nil	0.05			-	-	-
									0.5 -	0.75	-	-	-	-
			-							- 1.0	-	-	-	
		1.0	Sand	Fine to coarse grained, wet	Grey	-	Nil	Nil	1.0 -	1.25	-	-	-	-
									1.5 -		-		-	
									1.75	- 2.0	-	-	-	-
DU12	Netwol	2.0	Borehole terminated	Fine to medium grained sand, very moist	Dark brown	1	NB	NB	0.0	0.25	0.0.025	07	.10	0/
BH13	Natural	0.0	Sandy Light Clay Sandy Light Clay	Fine to medium grained sand, very moist Fine to medium grained sand, very moist	Grey with orange mottles	-	Nil	Nil	0.25	- 0.5	0.0 - 0.25	87	<10	96
		0.5	Sand	Fine to coarse grained, wet	Brown grey	-	Yes	Nil		0.75	-	-	-	-
										- 1.0	-		-	-
										1.25 - 1.5	-	-	-	-
										1.75	-	-	-	-
										- 2.0	-	-	-	-
		2.0	Borehole terminated			1			1		1			
BH14	Natural	0.0	Sandy Light Clay Sandy Light Clay	Fine to medium grained sand, very moist Fine to medium grained sand, very moist	Dark brown Grey with orange mottles	-	Nil	Nil		- 0.2 - 0.5	0.0 - 0.2	124	- 15	138
		0.2	Sand	Fine to coarse grained, wet	Grey orange	-	Yes	Nil		0.75	0.5 - 0.75	4	<10	13
					, ,					- 1.0	-	-	-	-
		1.0	Sand	Fine to coarse grained, wet	Grey	-	Nil	Nil		1.25	1.0 - 1.25	7	67	74
										- 1.5 1.75	- 1.5 - 1.75	- 11	- 69	- 69
										- 2.0	-		-	-
		2.0	Borehole terminated											
BH15	Natural	0.0	Sandy Light Clay	Fine to medium grained sand, very moist	Dark brown	-	Nil	Nil		0.25	0.0 - 0.25	108	13	121
		0.25	Sandy Light Clay Sand	Fine to medium grained sand, very moist Fine to coarse grained, wet	Grey with orange mottles Grey brown	-	Yes	Nil		- 0.5	- 0.5 - 0.75	- 4	- <10	- 14
		0.0		init it bould granted, not	0.0, 0.0					- 1.0	-	-	-	-
									1.0 -	1.25	1.0 - 1.25	4	67	71
		1 5	Sond	Fina to asserse grained, wat	Crow		N 13	N 121		- 1.5	-	-	-	-
		1.5	Sand	Fine to coarse grained, wet	Grey	-	Nil	Nil		- 2.0	-	-	-	-
		2.0	Borehole terminated			•			1.75					·

APPENDIX F - LABORATORY CERTIFICATES OF ANALYSIS

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB2220520		
Client Contact Address	E PRECISE ENVIRONMENTAL PTY LTD E MR CHRIS BUTLER E PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230	Laboratory Contact Address	 Environmental Division Brisbane Nidhi Bhimani 2 Byth Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: mail@preciseenvironmental.com.au : :	E-mail Telephone Facsimile	: nidhi.bhimani@alsglobal.com : +61-7-3243 7222 : +61-7-3243 7218
Project Order number C-O-C number Site Sampler	: PE3394.22 : PE3394.22 : : : CHRIS BUTLER, SEAN GARDINER	Page Quote number QC Level	: 1 of 4 : EB2017PREENV0003 (EN/222) : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receiv Client Requested Dur Date		Issue Date Scheduled Reporting	: 14-Jul-2022 Date : 21-Jul-2022
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	: Carrier	Security Seal Temperature No. of samples recei	: Intact. : 3.8, 5.0, 3.4, 4.4°C - Ice present ved / analysed : 68 / 68

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please be advised that the container for "BH10 1.75" (ALS ID#24) was received, labelled as "10". As all other "BH10" samples have been accounted for, this container will be reported as this sample. If you wish to discuss this further, please contact Client Services at ALSEnviro.Brisbane@alsglobal.com.
- SPLIT WORK ORDER: It should be noted that ALS has split this work order over the following work orders EB2220520 and EB2220427 due to the size of the sample numbers. For any further information regarding this processing of samples please contact ALS client services division on ALSEnviro.Brisbane@alsglobal.com
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The laboratory will process these samples unless instructions are received from
 you indicating you do not wish to proceed. The absence of this summary table indicates that all
 samples have been received within the recommended holding times for the analysis requested.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

\037
I Screening Analysis

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

033 1 Suite for Acid Sulphate Soils If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Laboratory sample ID	Sampling date / time	Sample ID	SOIL - EAC Chromium	SOIL - EAC ASS Field
EB2220520-001	12-Jul-2022 00:00	BH8 0.0		✓
EB2220520-002	12-Jul-2022 00:00	BH8 0.25		✓
EB2220520-003	12-Jul-2022 00:00	BH8 0.50		✓
EB2220520-004	12-Jul-2022 00:00	BH8 0.75		✓
EB2220520-005	12-Jul-2022 00:00	BH8 1.00		✓
EB2220520-006	12-Jul-2022 00:00	BH8 1.25		✓
EB2220520-007	12-Jul-2022 00:00	BH8 1.50		✓
EB2220520-008	12-Jul-2022 00:00	BH8 1.75		✓
EB2220520-009	12-Jul-2022 00:00	BH9 0.0		✓
EB2220520-010	12-Jul-2022 00:00	BH9 0.25		✓
EB2220520-011	12-Jul-2022 00:00	BH9 0.50		✓
EB2220520-012	12-Jul-2022 00:00	BH9 0.75		✓
EB2220520-013	12-Jul-2022 00:00	BH9 1.00		✓
EB2220520-014	12-Jul-2022 00:00	BH9 1.25		✓
EB2220520-015	12-Jul-2022 00:00	BH9 1.50		✓
EB2220520-016	12-Jul-2022 00:00	BH9 1.75		✓
EB2220520-017	12-Jul-2022 00:00	BH10 0.0		✓
EB2220520-018	12-Jul-2022 00:00	BH10 0.25		✓
EB2220520-019	12-Jul-2022 00:00	BH10 0.50		✓
EB2220520-020	12-Jul-2022 00:00	BH10 0.75		✓
EB2220520-021	12-Jul-2022 00:00	BH10 1.00		✓
EB2220520-022	12-Jul-2022 00:00	BH10 1.25		✓
EB2220520-023	12-Jul-2022 00:00	BH10 1.50		✓
EB2220520-024	12-Jul-2022 00:00	BH10 1.75		✓
EB2220520-025	12-Jul-2022 00:00	BH11 0.0	✓	✓
EB2220520-026	12-Jul-2022 00:00	BH11 0.25		✓
EB2220520-027	12-Jul-2022 00:00	BH11 0.50	✓	✓
EB2220520-028	12-Jul-2022 00:00	BH11 0.75		✓
EB2220520-029	12-Jul-2022 00:00	BH11 1.00	✓	✓
EB2220520-030	12-Jul-2022 00:00	BH11 1.25		✓
EB2220520-031	12-Jul-2022 00:00	BH11 1.50	1	✓
EB2220520-032	12-Jul-2022 00:00	BH11 1.75		✓
EB2220520-033	12-Jul-2022 00:00	BH11 2.00		✓
EB2220520-034	12-Jul-2022 00:00	BH11 2.25		✓
EB2220520-035	12-Jul-2022 00:00	BH11 2.50	1	✓

			SOIL - EA033 Chromium Suite for Acid Sulphate Soils	SOIL - EA037 ASS Field Screening Analysis
EB2220520-036	12-Jul-2022 00:00	BH11 2.75		1
EB2220520-037	12-Jul-2022 00:00	BH12 0.0		1
EB2220520-038	12-Jul-2022 00:00	BH12 0.25		1
EB2220520-039	12-Jul-2022 00:00	BH12 0.50		1
EB2220520-040	12-Jul-2022 00:00	BH12 0.75		1
EB2220520-041	12-Jul-2022 00:00	BH12 1.00		✓
EB2220520-042	12-Jul-2022 00:00	BH12 1.25		✓
EB2220520-043	12-Jul-2022 00:00	BH12 1.50		1
EB2220520-044	12-Jul-2022 00:00	BH12 1.75		1
EB2220520-045	12-Jul-2022 00:00	BH13 0.0		1
EB2220520-046	12-Jul-2022 00:00	BH13 0.25		1
EB2220520-047	12-Jul-2022 00:00	BH13 0.50		1
EB2220520-048	12-Jul-2022 00:00	BH13 0.75		1
EB2220520-049	12-Jul-2022 00:00	BH13 1.00		✓
EB2220520-050	12-Jul-2022 00:00	BH13 1.25		1
EB2220520-051	12-Jul-2022 00:00	BH13 1.50		1
EB2220520-052	12-Jul-2022 00:00	BH13 1.75		1
EB2220520-053	12-Jul-2022 00:00	BH14 0.0		1
EB2220520-054	12-Jul-2022 00:00	BH14 0.25		1
EB2220520-055	12-Jul-2022 00:00	BH14 0.50		✓
EB2220520-056	12-Jul-2022 00:00	BH14 0.75		1
EB2220520-057	12-Jul-2022 00:00	BH14 1.00		1
EB2220520-058	12-Jul-2022 00:00	BH14 1.25		1
EB2220520-059	12-Jul-2022 00:00	BH14 1.50		✓
EB2220520-060	12-Jul-2022 00:00	BH14 1.75		✓
EB2220520-061	12-Jul-2022 00:00	BH15 0.0	✓	1
EB2220520-062	12-Jul-2022 00:00	BH15 0.25		✓
EB2220520-063	12-Jul-2022 00:00	BH15 0.50	✓	✓
EB2220520-064	12-Jul-2022 00:00	BH15 0.75		✓
EB2220520-065	12-Jul-2022 00:00	BH15 1.00	✓	✓
EB2220520-066	12-Jul-2022 00:00	BH15 1.25		✓
EB2220520-067	12-Jul-2022 00:00	BH15 1.50		✓
EB2220520-068	12-Jul-2022 00:00	BH15 1.75		1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

RESULTS & INVOICE

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format XTab (XTAB)

Email Email Email Email Email Email Email mail@preciseenvironmental.com.au mail@preciseenvironmental.com.au mail@preciseenvironmental.com.au mail@preciseenvironmental.com.au mail@preciseenvironmental.com.au mail@preciseenvironmental.com.au

ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	CHAIN OF CUSTODY ALS Laboratory: please tick →	□ Sydney: 277 Woodpa Ph. 02 8781 8555 E:sam ⊡ Newcastle: 5 Rosgy Ph.02 4968 9433 E:sam	ples.sydney@a m Rd, Warabro	Isenviro.com Ph 07 3243 7222 wk NSW 2304 E Townsville:	E:sampics.brist 14-15 Desma C	ane@alsenvir , Bohle QLO 4	b.com Ph:0 818 □)3 8549 9 Adelaide	ne; 2-4 Westall Rd, 600 E. samples.me : 2-1 Burma Rd, Po 0890 E. adelaide@	elbourne@ais ooraka SA 50	enviro com 95	□ Perth: 10 Ph: 08 9209 □ Launces Ph: 03 633*	7655 E ton: 27	Brist W	ronmental Division pane ork Order Reference B2220520
CLIENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS :	Standa	rd TAT (List	due date):					1.	LABO		
OFFICE:	7/14 FREMANTLE ST, BURLEIGH H	IEADS 4220		(Standard T/ e.g., Ultra Tr	AT may be longer for some tests ace Organics)		andard or ur	gent TAT (Lis t	due dat				10000	dy Seal ce v no:		
PROJECT:	PE3394.22			ALS QUO	TE NO.: BN	1031/16 v4			_	COC SEQUE		·	receil	17 3 3 2		
RDER NUMBER:	PE3394.22		CONTACT:	0424 565 24	0					C: 1 2 :: 1 2				om San .comme		
ROJECT MANAGER:	CHRIS BUTLER / SEAN GARDINER		SAMPLER N			RELINQUIS	HED BY:			CEIVED BY:		• •	RELINQUI	and an		
OC emailed to ALS?			EDD FORM	AT (or defau	ilt):	CHRIS BUT	LER								Teleph	ione + 61-7-3243 7222
mail Reports to: mail	@preciseenvironmental.com.au					DATE/TIME	: C	D_ But		TE/TIME:			DATE/TIM	E:		
lail Invoice to: PQ Box	x 4424, Robina Town Centre 4230					13.07.22	9AM		1				l			
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	L:														
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	X: Solid(S)	CONTAINER INF	ORMATION				IRED including						Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belo		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)							Comments on likely contaminant levels diutions, or samples requiring specific (analysis etc.
1	BH8	0.0	12.07.22	s	BAG/<4°C		1	x								
2	BH8	0.25	12,07.22	s	BAG/<4 ⁰ C		1	x								
3	BH8	0.50	12.07.22	\$	BAG/<4°C		1	x					WORTH A			and a state of the
4	BH8	0.75	12.07.22	s	BAG/<4°C		1	x				S				
5	BH8	1.00	12.07.22	s			1	x			-	t				
6	ВН8	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x					Asso		h 140.	
7	BH8	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x			E	B2:	220	427	4	
B	вна	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
	· · · · · · · · · · · · · · · · · · ·															
/ater Container Codes:	 P = Unpreserved Plastic; N = Nitric Preserv	ed Plastic; ORC = Nitric Preserved ORC; Sf vec; VS = VOA Vial Sulfuric Preserved; AV =	l = Sodium Hydroxide/Cd Prese	arved; S = Soc	slum Hydroxide Preserved Plastic;	TDTAL AG = Amber G	ass Unprese	ved; AP - Airfre	ight Unpr	eserved Plastic						

V = VOA Vial HCI Preserved, VB = VOA Vial Sodium Bisulphate Preserved, VS = VOA Vial Sulfuric Preserved, Av = Arthroight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

CHAIN OF CUSTODY CHAIN OF CUSTODY ALS Laboratory: please tick 🔿

 Sydney: 277 Woodpark Rd. Smithfeld NSW 2176
 Brisbane: 32 Shand St, Stafford QLD 4053
 Ph. 02 8784 8555 E samples brisbane@alsenviro.com
 Ph.07 3243 7222 E samples brisbane@alsenviro.com Newcastle: 5 Rosegum Rd, Warabrook NSW 2304
D Townsville: 14-15 Desma Cl, Bohle GLD 4818
Ph 02 4968 9433 Esamyles.newcastlegialsenviro.com
Ph 07 4796 0600 E: townsville environmental@atemviro.com

 Melbourne: 2-4 Westall Rd, Springvale VIC 3171
 Ph/03 8549 9600 E: samples.melbourne@alsenviro.com Adelaide: 2-1 Burma Rd, Pooraka SA 5095
 Ph; 08 8359 0890 E:adelaide@alser.viro.com

Perth 10 Hod Way, Malaga WA 6090 Ph: 08 9202 7655 E samples.perth@alsenviro.com □ Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	PRECISE ENVIRONMENTAL				UND REQUIREMENTS :	Standard T								FOR	LABORAT	ORY USE O	NLY (Circle)
OFFICE:	7/14 FREMANTLE ST, BURLEIGH	HEADS 4220		(Standard TA e.g., Ultra Tra-		Non Stand	lard or urg	ent TAT (List o	due date):				Cust	icy Seal Intat	17.1	Yes No and I
PROJECT:	PE3394.22			ALS QUOT	ENO.: B	N031/16 v4				COC SEQU	ENCE NU	MBER	(Circle)	recei	ke / nozen k pl?	e dricks prese	Yes No. 1
ORDER NUMBER:	PE3394.22								COC:	12	3	45	6	7 Rand	om Sample	i emperature o	NLY (Crois) Vec No 200 Rusen Histoph C 1
PROJECT MANAGER:	CHRIS BUTLER			0431 565 210					OF:	12	3	45	6	7 Other	r comment.		a in an
SAMPLER:	CHRIS BUTLER / SEAN GARDINE	R	SAMPLER	MOBILE: 0409	827 396	RELINQUISHE			REC	EIVED BY:				RELINQUI	SHED BY:		RECEIVED BY:
COC emailed to ALS? (YES / NO)		EDD FORM	AT (or default):	CHRIS BUTLE											
Email Reports to: mail@	preciseenvironmental.com.au					DATE/TIME:		D_ Butt	JATI	E/TIME:				DATE/TIM	E:		DATE/TIME:
Mail Invoice to: PO Box	4424, Robina Town Centre 4230					13.07.22 9A	M							,			
COMMENTS/SPECIAL H	IANDLING/STORAGE OR DISPOSA	AL:						_									······
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INF	ORMATION		ANALYSIS Where Me		RED includia quired, specify Te	-						Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo	rive w)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium sulte)								Comments en likely contaminant levels, diutions, or samples requiring specific QC analysis etc.
17	BH10	0.0	12.07.22	s	BAG/<4°C		1	x									
18	BH10	0.25	12.07.22	s	BAG/<4°C		1	x									
19	BH10	0.50	12.07.22	5	BAG/<4°C		1	x									
20	BH10	0.75	12.07.22	s	BAG/<4 ⁰ C		1	×									
21	BH10	1.00	12.07.22	s	BAG/<4°C		1	x									
22	BH10	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x									
23	BH10	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x									
24	BH10	1.75	12.07.22	S	BAG/<4 ⁰ C		1	x									
															-		
					······												
<u> </u>	· · ·											_				-	
								_ _			+	+					
						TOTAL	8									-	

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

ALS	ALS Laboratory: please tick ᢣ	ALS Laboratory: please tick ->	□ Newcastle: 5 Rosegu Ph 02 4968 9433 Etsam							2-1 Burma Rd, i 390 E:adelaide(2158 E: launce		slon TAS 7250 ra.com
IENT:	PRECISE ENVIRONMENTAL				UND REQUIREMENTS :	Stand:	ard TA⊤ (List	due date):					1.2.2		医水理 动脉	ILY (Circle)
FICE:	7/14 FREMANTLE ST, BURLEIG	H HEADS 4220		e.g., Ultra Tra	T may be longer for some tests ace Organics)		tandard or un	gent TAT (Lis	t due date				Custo	ty Seal Intact?		Yes No.
OJECT:	PE3394.22			ALS QUOT	TE NO.: BN	1031/16 v4					ENCE NUMBI		(BCORD	1		
DER NUMBER:	PE3394.22		001174.07	1						1 2			2.5.5.5.5	m Sample Ter comment	States States du	and the second second second second second second second second
OJECT MANAGER:	CHRIS BUTLER	ED.		0431 565 210 MOBILE: 0409		RELINQUI				1 2 EIVED BY:	3 4	5 6	RELINQUIS	CAURD COLOR OF ANY ANY		RECEIVED BY:
MPLER: C emailed to ALS?				AT (or defaul		CHRIS BU										
	@preciseenvironmental.com.au					DATE/TIMI		D But	ا DATI	E/TIME:			DATE/TIME	:		DATE/TIME:
	x 4424, Robina Town Centre 4230					13.07.22	9АМ		1							
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPO	SAL:														· · · · · · · · · · · · · · · · · · ·
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INFO	ORMATION					•		des must be lis Dissolved (field			Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE <i>(</i> TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)		Í					Comments on likely contaminant law dilutiona, or samples requiring specifi analysis etc.
25	BH11	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x	x							
26	BH11	0.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
27	BH11	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x	x							
28	BH11	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
29	BH11	1.00	12.07.22	s	BAG/<4°C		1	x	x							
30	6H11	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
31	BH11	1.50	12.07.22	s	BAG/<4 ⁰ C	_	1	x	x							
32	BH11	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
33	BH11	2.00	12.07.22	s	BAG/<4 ⁰ C		1	x								
34	BH11	2.25	12.07.22	s	BAG/<4 ⁰ C		1	x			1					
35	BH11	2.50	12.07.22	s	BAG/<4°C		1	x	x							
36	BH11	2.75	12.07.22	s	BAG/<4 ⁰ C		1	x	· · ·							
and the second secon			and the statement of th													
						ΤΟΤΑΙ	12									

			Ph:02 4968 9433 E samp						1. 00 0000 00	390 E:adetaide(gaisen moleon				eston@alsenv	
JENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS : AT may be longer for some tests		dard TAT (List						746240-16 14624-09	S Contract of Contraction		₩Y-(Circle)
FICE:	7/14 FREMANTLE ST, BURLEIGH H	IEADS 4220		e.g., Ultra Tr	ace Organics)		Standard or un	gent TAT (Lis	it due date): COC SEQUI			Free id	iy Seal Intact e / frozen ke	bricks preser	tes No
OJECT:	PE3394.22			ALS QUO	IE NO.: Br	N031/16 v4						•	toreth	1 - C	emperature or	
DER NUMBER:	PE3394.22		CONTACT:	1424 ECE 24	0					12 12			100	comment:	anperacie o	
OJECT MANAGER:	CHRIS BUTLER	······································	SAMPLER N			RELINOU	SHED BY:			EIVED BY:	3 4	3 0	RELINQUIS	A DESCRIPTION OF A DESC		RECEIVED BY:
C emailed to ALS?			EDD FORM		· · ·	CHRIS BU			1120							
	@preciseenvironmental.com.au		EDD OKAD			DATE/TIM		DRut	DATI	E/TIME:			DATE/TIME	Ŀ		DATE/TIME:
-	x 4424, Robina Town Centre 4230				· · · · · · · · · · · · · · · · ·	13.07.22	\sim	k_ can	1							
	HANDLING/STORAGE OR DISPOSA	 L:				L										
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATRI	X: Solid(S)	CONTAINER INF	ORMATION	4						des must be list Dissolved (field			Additional Informati
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes beio		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)							Comments on likely contaminent l ditutions, or samples requiring spe analysis etc.
37	BH12	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x								
3&	BH12	0.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
39	BH12	0.50	12.07.22	8	BAG/<4 ⁰ C		1	x								
40	BH12	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
41	BH12	1.00	12.07.22	s	BAG/<4 [°] C		1	x								
42	BH12	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
43	BH12	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x								
iş lə	BH12	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
																
						τοτα	8						,			

(ALS)	ALS Laboratory: please tick →	ALS Laboratory: please tick 🗲	Newcastle: 5 Roseg Ph 02 4968 9433 Elsan	iples.newcastle(ack NSW 2304 D Townsville: 14-15 De Belsenvro.com Ph:07 4796 0600 E: townsv	sistila CI, Bonie QLD 4 dio environmenta@alsoi				Pooraka SA 5095 Balsenviro.com	Ph: 03 63	31 2158 E: laune	ceston@alsenv	
IENT:	PRECISE ENVIRONMENTAL					Standard TAT (List	due date):				FO	LABORAT	ORY USE O	NLY (Circle)
FICE:	7/14 FREMANTLE ST, BURLEIGH H	IEAD\$ 4220			AT may be longer for some tests race Organics)	Non Standard or ur	gent TAT (List	due date):			ody Seal Intec		Yes No.
OJECT:	PE3394.22			ALS QUO	TE NO.: BN031/16	5 v4			COC SEQUE	ENCE NUMBER (CI	rcie) (Pree (rece	içe / frozen ic pl?	e bricks prese	Nupon Yest No
DER NUMBER:	PE3394.22							COC:	1 2	3 4 5	6 7 Ran	dom Sample T	emperature o	nReceipt:
OJECT MANAGER:	CHRIS BUTLER		CONTACT:	0431 565 21	0			OF:	12	3 4 5	6 7 Oth	si comment		授印——·法公司中部部 [1]
MPLER:	CHRIS BUTLER / SEAN GARDINER	1	SAMPLER	MOBILE: 040	09 827 396 RELIN	QUISHED BY:		REC	EIVED BY:		RELINQU	ISHED BY:		RECEIVED BY:
C emailed to ALS?	(YES / NO)		EDD FORM	AT (or defau	1	S BUTLER								
nall Reports to: mail	@preciseenvironmental.com.au						D_But	DATI	E/TIME:		DATE/TIN	Æ:		DATE/TIME:
il Invoice to: PO Bo	x 4424, Robina Town Centre 4230				13.0	7.22 9AM								
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L:												
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INFORMAT	TION				g SUITES (NB. Suite				Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)						Comments on likely contaminant levels, dilutions, or samples requiring specific Q analysis etc.
45	BH13	0.0	12.07.22	s	BAG/<4°C	1	x							
46	BH13	0.25	12.07.22	s	BAG/<4 ⁰ C	1	x							
47	BH13	0.50	12.07.22	s	BAG/<4 ⁰ C	1	x							
45	BH13	0.75	12.07.22	s	BAG/<4 ⁰ C	1	×							
49	BH13	1.00	12.07.22	s	BAG/<4 ⁰ C	1	x							
50	BH13	1.25	12.07.22	s	BAG/<4 ⁰ C	1	x							
51	BH13	1.50	12.07.22	8	BAG/<4°C	1	x							
52	ВН13	1.75	12.07.22	s	BAG/<4°C	1	x							
											·			
					Ţ	OTAL 8			1					<u></u>

			Ph:02 4968 9433 E:sample	~						890 E:adeiaide@			2158 E launces		and the second
ENT:	PRECISE ENVIRONMENTAL				T may be langer for some tests	Standard 1	•	•				4.0.0	LABORATO	RY USE ON	LY (Circle)
	7/14 FREMANTLE ST, BURLEIGH I	HEADS 4220		e.g. Ultra Tra	ace Organics)	Non Stand Non 31/16 v4	ard or un	gent TAT (List c	due date		NCE NUMBER		iy Seal Intacl? e / frozen ice t	ricks present	upon Yest No
OJECT:	PE3394.22 PE3394.22			ALS QUOT	IENU.: 5NU	J31/16 V4			_		3 4 5	 receipt	? m Sample Ten		
DER NUMBER:			CONTACT: 04	431 565 21(_		3 4 5	10.00	comment		
MPLER:	CHRIS BUTLER / SEAN GARDINER		SAMPLER MO		F	RELINQUISHE	D BY:		_	EIVED BY:		 RELINQUIS	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	RECEIVED BY:
C emailed to ALS? (EDD FORMAT			CHRIS BUTLE	R								
- · · · · · · · ·	preciseenvironmental.com.au					DATE/TIME:	\mathcal{C}	D_ Butt	LE DAT	E/TIME:		DATE/TIME	2		DATE/TIME:
il Invoice to: PO Box	4424, Robina Town Centre 4230					13.07.22 9A	~	~~~	1						
MMENTS/SPECIAL I	ANDLING/STORAGE OR DISPOSA	L:		<u>. </u>											<u> </u>
ALSUSEONLY	SAMPLE DETAILS	Water(W)	MATRIX	: Solid(S)	CONTAINER INFO	RMATION	-				g SUITES (NB.				Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)						Comments on likely contaminent levels diutione, or samples requiring specific f analysis etc.
53	BH14	0.0	12.07.22	8	BAG/<4 ⁰ C		1	x							
54	BH14	0.25	12.07.22	s	BAG/<4°C		1	x							-
55	BH14	0.50	12.07.22	s	BAG/<4°C		1	x							
56	BH14	0.75	12.07.22	8	BAG/<4 ⁰ C		1	x							
57	BH14	1.00	12.07.22	8	BAG/<4°C		1	x							
ぢち	BH14	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x							
59	BH14	1.50	12.07.22	ş	BAG/<4°C		1	x							
60	BH14	1.75	12.07.22	s	BAG/<4°C		1	x							
												 1			
	and the second se					TOTAL	8								

Wener container courses: r = unpreserved reast; r = unite reserved reast; r = unite reserved reast; r = volume reserved reast; r = volume reserved reast; r = unite reserved reast; r = volume reserved reast; r = unite reserved reast; r = volume reserved reserved reast; r = volume reserved reserved reast; r = volume reserved re

	ALS Laboratory: please tick 🗲	ALS Laboratory: please tick 🗲	Ph. 02 8784 8555 Elsan 11 Newcastle: 5 Roseg Ph:02 4968 9433 Elsam	um Rd, Warabro	ok NSW 2304 🛛 🗍 Townsville: 14-15	5 Desma Cl, Bol	hie QLD 48	ne 🗆	Adelaide:	600 E: samplesa 2-1 Burma Rd. 3890 E:adelaide	Pooraka SA 50	95	Launcest	on: 27 Wellin	les.perth@alse gton St, Launce seston@alsen.v	ston TAS 7250
IENT:	PRECISE ENVIRONMENTAL		TURNAROUND REQUIREMENTS : Standard TAT (List due date):					FOR LABORATORY USE ONLY (Circle)								
FFICE:	7/14 FREMANTLE ST, BURLEIGH	HEADS 4220	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)			□ Non Standard or urgent TAT (List due date):				Custody Seel Inact2 Custody Seel Inact2 Custody Seel Inact2 Fig. No. Fig. 10 Fig. 10 Fig. 10 Custody Seel Inact2 See See See See See See See See See						
ROJECT:	PE3394.22			ALS QUO		1/16 v4					ENCE NUMB	ER (Circle)	Freel	ce / frozen ice	bricks preser	tupon yes No
DER NUMBER:	PE3394.22								coc	: 1 2	34	56	7 Rånde	om Sample T	emperature of	Receipt
OJECT MANAGER:	CHRIS BUTLER		CONTACT:	0431 565 21	0				OF:	1 2	34	56	7 Other	comment		
MPLER:	CHRIS BUTLER / SEAN GARDINE	R	SAMPLER	MOBILE: 040	9 827 396 RE	LINQUISHE	D BY:			EIVED BY:			RELINQUE			RECEIVED BY:
C emailed to ALS?	(YES / NO)		EDD FÖRM	AT (or defau	It): CH	IRIS BUTLEI	R									
ail Reports to: mail	@preciseenvironmental.com.au				DA	ATE/TIME:	\mathcal{C}	D But	ا العر DAT	E/TIME:			DATE/TIM	E:		DATE/TIME:
il Invoice to: PO Bo	x 4424, Robina Town Centre 4230				13	3.07.22 9A	м 🦳	A	1							
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	NL:														
ALS USE ONLY	SAMPLE DETAILS Water(W)		MATR	MATRIX: Solid(S) CONTAINER IN		FORMATION				REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite pric als are required, specify Total (unfiltered bottle required) or Dissofwed (field filtered bottle required)				Additional Information		
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	<u>.</u>	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)							Comments on likely contaminant levels, dilutions, or samples requiring specific Q(analysis etc.
61	BH15	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x	x							
62	BH15	0.25	12.07.22	s	BAG/<4°C		1	x								
63	BH15	0.50	12.07.22	s	BAG/<4°C		1	x	х							
64	BH15	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
65	BH15	1.00	12.07.22	s	BAG/<4°C		1	x	x				+			<u>.</u>
66	BH15	1.25	12.07.22	s	BAG/<4°C		1	x								
67	BH15	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x							-	· · · ·
68	BH15	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
								·								
						TOTAL	8									

CERTIFICATE OF ANALYSIS

Work Order	EB2220520	Page	: 1 of 16	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Bri	sbane
Contact	: MR CHRIS BUTLER	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424	Address	: 2 Byth Street Stafford QLD	Australia 4053
	ROBINA TOWN CENTRE QLD, AUSTRALIA 4230			
Telephone		Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 14-Jul-2022 11:35	AWIIIII.
Order number	: PE3394.22	Date Analysis Commenced	: 19-Jul-2022	
C-O-C number	:	Issue Date	: 21-Jul-2022 15:20	
Sampler	: CHRIS BUTLER, SEAN GARDINER			HAC-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 68			Accredited for compliance with
No. of samples analysed	: 68			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- SPLIT WORK ORDER: It should be noted that ALS has split this work order over the following work orders EB2220520 and EB2220427 due to the size of the sample numbers. For any further information regarding this processing of samples please contact ALS client services division on ALSEnviro.Brisbane@alsglobal.com
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): ANC not required because pH KCl less than 6.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH8 0.0	BH8 0.25	BH8 0.50	BH8 0.75	BH8 1.00
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-001	EB2220520-002	EB2220520-003	EB2220520-004	EB2220520-005
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.7	5.7	5.8	5.6	5.9
ø pH (Fox)		0.1	pH Unit	2.4	2.9	4.2	3.6	2.0
Ø Reaction Rate		1	-	3	3	1	1	1

Page : 4 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH8 1.25	BH8 1.50	BH8 1.75	BH9 0.0	BH9 0.25
	Samplii	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-006	EB2220520-007	EB2220520-008	EB2220520-009	EB2220520-010
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	6.0	5.8	5.8	5.8	5.9
ø pH (Fox)		0.1	pH Unit	2.1	2.3	2.0	2.4	2.8
Ø Reaction Rate		1	-	4	4	4	3	3

Page : 5 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH9 0.50	BH9 0.75	ВН9 1.00	BH9 1.25	BH9 1.50
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-011	EB2220520-012	EB2220520-013	EB2220520-014	EB2220520-015
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	6.2	6.3	6.4	5.6	5.1
ø pH (Fox)		0.1	pH Unit	3.8	4.2	2.0	1.9	1.8
Ø Reaction Rate		1	-	1	1	1	1	1

Page : 6 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH9 1.75	BH10 0.0	BH10 0.25	BH10 0.50	BH10 0.75
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-016	EB2220520-017	EB2220520-018	EB2220520-019	EB2220520-020
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.2	5.4	5.7	5.4	5.7
øpH (Fox)		0.1	pH Unit	1.7	2.6	3.5	3.0	2.5
Ø Reaction Rate		1	-	1	3	2	2	2

Page : 7 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH10	BH10	BH10	BH10	BH11
(Matrix: SOIL)				1.00	1.25	1.50	1.75	0.0
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220520-021	EB2220520-022	EB2220520-023	EB2220520-024	EB2220520-025
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit					6.1
Titratable Actual Acidity (23F)		2	mole H+ / t					4
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S					<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S					0.020
acidity - Chromium Reducible Sulfur		10	mole H+ / t					12
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-					1.5
Net Acidity (sulfur units)		0.02	% S					0.02
Net Acidity (acidity units)		10	mole H+ / t					16
Liming Rate		1	kg CaCO3/t					1
Net Acidity excluding ANC (sulfur units)		0.02	% S					0.02
Net Acidity excluding ANC (acidity units)		10	mole H+ / t					16
Liming Rate excluding ANC		1	kg CaCO3/t					1
EA037: Ass Field Screening Analysis								
ØpH (F)		0.1	pH Unit	5.8	5.7	5.5	5.6	5.8
ø pH (Fox)		0.1	pH Unit	2.2	2.1	2.0	2.3	2.7
Ø Reaction Rate		1	-	4	4	4	4	3

Page : 8 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH11	BH11	BH11	BH11	BH11
(Matrix: SOIL)				0.25	0.50	0.75	1.00	1.25
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220520-026	EB2220520-027	EB2220520-028	EB2220520-029	EB2220520-030
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		5.1		5.5	
Titratable Actual Acidity (23F)		2	mole H+ / t		32		8	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		0.05		<0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.011		0.014	
acidity - Chromium Reducible Sulfur		10	mole H+ / t		<10		<10	
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5		1.5	
Net Acidity (sulfur units)		0.02	% S		0.06		0.02	
Net Acidity (acidity units)		10	mole H+ / t		39		16	
Liming Rate		1	kg CaCO3/t		3		1	
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.06		0.02	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		39		16	
Liming Rate excluding ANC		1	kg CaCO3/t		3		1	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.7	5.0	5.1	5.5	5.5
ø pH (Fox)		0.1	pH Unit	2.8	3.0	2.5	2.6	2.2
Ø Reaction Rate		1	-	3	3	3	3	1

Page : 9 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH11	BH11	BH11	BH11	BH11
(Matrix: SOIL)				1.50	1.75	2.00	2.25	2.50
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220520-031	EB2220520-032	EB2220520-033	EB2220520-034	EB2220520-035
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	5.4				5.5
Titratable Actual Acidity (23F)		2	mole H+ / t	5				4
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.212				0.189
acidity - Chromium Reducible Sulfur		10	mole H+ / t	132				118
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5				1.5
Net Acidity (sulfur units)		0.02	% S	0.22				0.19
Net Acidity (acidity units)		10	mole H+ / t	138				122
Liming Rate		1	kg CaCO3/t	10				9
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.22				0.19
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	138				122
Liming Rate excluding ANC		1	kg CaCO3/t	10				9
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.3	5.2	5.5	5.4	5.5
ø pH (Fox)		0.1	pH Unit	2.2	2.1	2.0	2.0	2.0
Ø Reaction Rate		1	-	4	4	4	4	4

Page : 10 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH11 2.75	BH12 0.0	BH12 0.25	BH12 0.50	BH12 0.75
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-036	EB2220520-037	EB2220520-038	EB2220520-039	EB2220520-040
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.5	5.3	5.6	5.6	5.5
ø pH (Fox)		0.1	pH Unit	2.2	2.9	3.0	4.2	3.6
ø Reaction Rate		1	-	4	2	2	1	1

Page : 11 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH12 1.00	BH12 1.25	BH12 1.50	BH12 1.75	BH13 0.0
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-041	EB2220520-042	EB2220520-043	EB2220520-044	EB2220520-045
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.9	5.4	5.4	5.2	5.3
ø pH (Fox)		0.1	pH Unit	2.0	2.0	2.1	2.1	2.1
ø Reaction Rate		1	-	4	4	4	4	3

Page : 12 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH13 0.25	BH13 0.50	BH13 0.75	BH13 1.00	BH13 1.25
	Samplii	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-046	EB2220520-047	EB2220520-048	EB2220520-049	EB2220520-050
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
øpH (F)		0.1	pH Unit	4.8	6.0	5.9	6.0	6.0
ø pH (Fox)		0.1	pH Unit	2.7	3.0	3.8	2.1	2.1
Ø Reaction Rate		1	-	3	2	1	4	4

Page : 13 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH13 1.50	BH13 1.75	BH14 0.0	BH14 0.25	BH14 0.50
	Samplii	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-051	EB2220520-052	EB2220520-053	EB2220520-054	EB2220520-055
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
øpH (F)		0.1	pH Unit	5.9	6.0	5.5	5.6	5.5
ø pH (Fox)		0.1	pH Unit	2.0	2.1	2.8	3.3	3.6
Ø Reaction Rate		1	-	4	4	3	1	1

Page : 14 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH14 0.75	BH14 1.00	BH14 1.25	BH14 1.50	BH14 1.75
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220520-056	EB2220520-057	EB2220520-058	EB2220520-059	EB2220520-060
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.9	5.9	6.2	6.0	6.1
ø pH (Fox)		0.1	pH Unit	3.4	2.0	2.0	2.1	2.0
Ø Reaction Rate		1	-	1	4	4	4	4

Page : 15 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH15	BH15	BH15	BH15	BH15
(Matrix: SOIL)				0.0	0.25	0.50	0.75	1.00
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220520-061	EB2220520-062	EB2220520-063	EB2220520-064	EB2220520-065
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	4.6		5.8		5.6
Titratable Actual Acidity (23F)		2	mole H+ / t	108		4		4
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.17		<0.02		<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.020		0.016		0.107
acidity - Chromium Reducible Sulfur		10	mole H+ / t	13		<10		67
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5		1.5		1.5
Net Acidity (sulfur units)		0.02	% S	0.19		0.02		0.11
Net Acidity (acidity units)		10	mole H+ / t	121		14		71
Liming Rate		1	kg CaCO3/t	9		1		5
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.19		0.02		0.11
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	121		14		71
Liming Rate excluding ANC		1	kg CaCO3/t	9		1		5
EA037: Ass Field Screening Analysis								
øpH (F)		0.1	pH Unit	5.7	5.6	6.3	6.4	6.6
ø pH (Fox)		0.1	pH Unit	3.0	3.3	3.6	4.3	1.9
Ø Reaction Rate		1	-	3	3	1	1	1

Page : 16 of 16 Work Order : EB2220520 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH15 1.25	BH15 1.50	BH15 1.75	
		Samplii	ng date / time	12-Jul-2022 00:00	12-Jul-2022 00:00	12-Jul-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2220520-066	EB2220520-067	EB2220520-068	
				Result	Result	Result	
EA037: Ass Field Screening Analysis							
ø pH (F)		0.1	pH Unit	6.8	6.9	7.0	
ø pH (Fox)		0.1	pH Unit	2.1	2.0	1.9	
Ø Reaction Rate		1	-	4	1	1	

QUALITY CONTROL REPORT

Work Order	: EB2220520	Page	: 1 of 4	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division B	Brisbane
Contact	: MR CHRIS BUTLER	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230	Address	: 2 Byth Street Stafford QL	D Australia 4053
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 14-Jul-2022	
Order number	: PE3394.22	Date Analysis Commenced	: 19-Jul-2022	
C-O-C number	:	Issue Date	: 21-Jul-2022	
Sampler	: CHRIS BUTLER, SEAN GARDINER			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 68			Accredited for compliance with
No. of samples analysed	: 68			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris

Senior Acid Sulfate Soil Chemist

Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA033-A: Actual Ac	idity (QC Lot: 446783	35)							
EB2220449-016	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	8.4	8.5	0.0	0% - 20%
EB2220520-063	BH15 0.50	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	4	5	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	5.8	5.7	0.0	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 446	7835)							
EB2220449-016	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.042	0.045	7.2	No Limit
		EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	26	28	7.2	No Limit
EB2220520-063	BH15 0.50	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.016	0.015	0.0	No Limit
		EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10	<10	0.0	No Limit
EA037: Ass Field S	creening Analysis (C								
EB2220520-001	BH8 0.0	EA037: pH (F)		0.1	pH Unit	5.7	5.7	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.4	2.4	0.0	0% - 20%
EB2220520-011	BH9 0.50	EA037: pH (F)		0.1	pH Unit	6.2	6.3	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	3.8	3.8	0.0	0% - 20%
EA037: Ass Field S	creening Analysis (C	C Lot: 4465712)	i i i i i i i i i i i i i i i i i i i			·			
EB2220520-021	BH10 1.00	EA037: pH (F)		0.1	pH Unit	5.8	5.7	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.2	2.2	0.0	0% - 20%
EB2220520-031	BH11 1.50	EA037: pH (F)		0.1	pH Unit	5.3	5.2	1.9	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.2	2.2	0.0	0% - 20%

Page	: 3 of 4
Work Order	: EB2220520
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Sub-Matrix: SOIL	jub-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA037: Ass Field Screening Analysis (QC Lot: 4465713)											
EB2220520-041	BH12 1.00	EA037: pH (F)		0.1	pH Unit	5.9	6.0	0.0	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	2.0	2.0	0.0	0% - 50%		
EB2220520-051	BH13 1.50	EA037: pH (F)		0.1	pH Unit	5.9	5.9	0.0	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	2.0	2.0	0.0	0% - 20%		
EA037: Ass Field S	creening Analysis (QC Lot:	4465714)									
EB2220520-061	BH15 0.0	EA037: pH (F)		0.1	pH Unit	5.7	5.8	0.0	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	3.0	2.9	0.0	0% - 20%		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	b-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA033-A: Actual Acidity (QCLot: 4467835)									
EA033: pH KCI (23A)			pH Unit		4.4 pH Unit	102	91.0	107	
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	19 mole H+ / t	89.9	70.0	124	
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
EA033-B: Potential Acidity (QCLot: 4467835)									
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.246 % S	91.4	77.0	121	
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order :	EB2220520	Page	: 1 of 5
Client :	PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact :	MR CHRIS BUTLER	Telephone	: +61-7-3243 7222
Project :	PE3394.22	Date Samples Received	: 14-Jul-2022
Site :		Issue Date	: 21-Jul-2022
Sampler :	CHRIS BUTLER, SEAN GARDINER	No. of samples received	: 68
Order number :	PE3394.22	No. of samples analysed	: 68

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-A: Actual Acidity								
Snap Lock Bag - frozen (EA033)								
BH11 - 0.0,	BH11 - 0.50,	12-Jul-2022	20-Jul-2022	12-Jul-2023	~	20-Jul-2022	18-Oct-2022	 ✓
BH11 - 1.00,	BH11 - 1.50,							
BH11 - 2.50,	BH15 - 0.0,							
BH15 - 0.50,	BH15 - 1.00							
EA033-B: Potential Acidity								
Snap Lock Bag - frozen (EA033)								
BH11 - 0.0,	BH11 - 0.50,	12-Jul-2022	20-Jul-2022	12-Jul-2023	1	20-Jul-2022	18-Oct-2022	✓
BH11 - 1.00,	BH11 - 1.50,							
BH11 - 2.50,	BH15 - 0.0,							
BH15 - 0.50,	BH15 - 1.00							
EA033-C: Acid Neutralising Capacity								
Snap Lock Bag - frozen (EA033)								
BH11 - 0.0,	BH11 - 0.50,	12-Jul-2022	20-Jul-2022	12-Jul-2023	1	20-Jul-2022	18-Oct-2022	✓
BH11 - 1.00,	BH11 - 1.50,							
BH11 - 2.50,	BH15 - 0.0,							
BH15 - 0.50,	BH15 - 1.00							
EA033-D: Retained Acidity								
Snap Lock Bag - frozen (EA033)								
BH11 - 0.0,	BH11 - 0.50,	12-Jul-2022	20-Jul-2022	12-Jul-2023	1	20-Jul-2022	18-Oct-2022	✓
BH11 - 1.00,	BH11 - 1.50,							
BH11 - 2.50,	BH15 - 0.0,							
BH15 - 0.50,	BH15 - 1.00							
EA033-E: Acid Base Accounting								
Snap Lock Bag - frozen (EA033)								
BH11 - 0.0,	BH11 - 0.50,	12-Jul-2022	20-Jul-2022	12-Jul-2023	1	20-Jul-2022	18-Oct-2022	✓
BH11 - 1.00,	BH11 - 1.50,							
BH11 - 2.50,	BH15 - 0.0,							
BH15 - 0.50,	BH15 - 1.00		1			1		

Page	: 3 of 5
Work Order	: EB2220520
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Matrix: SOIL					Evaluation	i: × = Holding time	breach ; 🗸 = With	n holding tim	
Method		Sample Date	E>	traction / Preparation			Analysis	nalysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA037: Ass Field Screening Analysis							·		
Snap Lock Bag - frozen (EA037)									
BH8 - 0.0,	BH8 - 0.25,	12-Jul-2022	19-Jul-2022	08-Jan-2023	1	19-Jul-2022	08-Jan-2023	✓	
BH8 - 0.50,	BH8 - 0.75,								
BH8 - 1.00,	BH8 - 1.25,								
BH8 - 1.50,	BH8 - 1.75,								
BH9 - 0.0,	BH9 - 0.25,								
BH9 - 0.50,	BH9 - 0.75,								
BH9 - 1.00,	BH9 - 1.25,								
BH9 - 1.50,	BH9 - 1.75,								
BH10 - 0.0,	BH10 - 0.25,								
BH10 - 0.50,	BH10 - 0.75,								
BH11 - 0.0,	BH10 - 1.00, BH10 - 1.25,								
BH10 - 1.50,	BH10 - 1.75,								
BH11 - 0.25,									
BH11 - 0.50,	BH11 - 0.75,								
BH11 - 1.00,	BH11 - 1.25,								
BH11 - 1.50,	BH11 - 1.75,								
BH11 - 2.00,	BH11 - 2.25,								
BH11 - 2.50,	BH11 - 2.75,								
BH12 - 0.0,	BH12 - 0.25,								
BH12 - 0.50,	BH12 - 0.75,								
BH12 - 1.00,	BH12 - 1.25,								
BH12 - 1.50,	BH12 - 1.75,								
BH13 - 0.0,	BH13 - 0.25,								
BH13 - 0.50,	BH13 - 0.75,								
BH13 - 1.00,	BH13 - 1.25,								
BH13 - 1.50,	BH13 - 1.75,								
BH14 - 0.0,	BH14 - 0.25,								
BH14 - 0.50,	BH14 - 0.75,								
BH14 - 1.00,	BH14 - 1.25,								
BH14 - 1.50,	BH14 - 1.75,								
BH15 - 0.0,	BH15 - 0.25,								
BH15 - 0.50,	BH15 - 0.75,								
BH15 - 1.00,	BH15 - 1.25,								
BH15 - 1.50,	BH15 - 1.75								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	7	68	10.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chromium Suite for Acid Sulphate Soils	EA033	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chromium Suite for Acid Sulphate Soils	EA033	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
ASS Field Screening Analysis	* EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines. As received samples are tested for pH field and pH fox and assessed for a reaction rating.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB2220427		
Client Contact Address	E PRECISE ENVIRONMENTAL PTY LTD E MR CHRIS BUTLER E PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230	Laboratory Contact Address	 Environmental Division Brisbane Nidhi Bhimani 2 Byth Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: mail@preciseenvironmental.com.au : :	E-mail Telephone Facsimile	: nidhi.bhimani@alsglobal.com : +61-7-3243 7222 : +61-7-3243 7218
Project Order number C-O-C number Site Sampler	: PE3394.22 : PE3394.22 : : : CHRIS BUTLER, SEAN GARDINER	Page Quote number QC Level	: 1 of 3 : EB2017PREENV0003 (EN/222) : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receiv Client Requested Dur Date		Issue Date Scheduled Reportir	: 14-Jul-2022 ng Date : 20-Jul-2022
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	ils : Carrier : 4 : HARD ESKY	Security Seal Temperature No. of samples rec	: Intact. : 3.8, 5.0, 3.4, 4.4°C - Ice present eived / analysed : 64 / 64

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please be advised that sample "BH4 0.75, BH5 2.00 and BH5 2.25" was not received at the laboratory (denoted SNR on the scanned COC).
- SPLIT WORK ORDER: It should be noted that ALS has split this work order over the following work orders EB2220520 and EB2220427 due to the size of the sample numbers. For any further information regarding this processing of samples please contact ALS client services division on ALSEnviro.Brisbane@alsglobal.com
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The laboratory will process these samples unless instructions are received from
 you indicating you do not wish to proceed. The absence of this summary table indicates that all
 samples have been received within the recommended holding times for the analysis requested.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

\037
I Screening Analysis

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

033 1 Suite for Acid Sulphate Soils If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Laboratory sample ID	Sampling date / time	Sample ID	SOIL - EAC Chromium	SOIL - EAC ASS Field \$
EB2220427-001	12-Jul-2022 00:00	BH1 0.0	✓	✓
EB2220427-002	12-Jul-2022 00:00	BH1 0.25		✓
EB2220427-003	12-Jul-2022 00:00	BH1 0.50	1	✓
EB2220427-004	12-Jul-2022 00:00	BH1 0.75		✓
EB2220427-005	12-Jul-2022 00:00	BH1 1.00	✓	✓
EB2220427-006	12-Jul-2022 00:00	BH1 1.25		✓
EB2220427-007	12-Jul-2022 00:00	BH1 1.50	✓	✓
EB2220427-008	12-Jul-2022 00:00	BH1 1.75		✓
EB2220427-009	12-Jul-2022 00:00	BH1 2.00		✓
EB2220427-010	12-Jul-2022 00:00	BH1 2.25		1
EB2220427-011	12-Jul-2022 00:00	BH1 2.50	✓	✓
EB2220427-012	12-Jul-2022 00:00	BH1 2.75		1
EB2220427-013	12-Jul-2022 00:00	BH2 0.0		✓
EB2220427-014	12-Jul-2022 00:00	BH2 0.25		1
EB2220427-015	12-Jul-2022 00:00	BH2 0.50		✓
EB2220427-016	12-Jul-2022 00:00	BH2 0.75		1
EB2220427-017	12-Jul-2022 00:00	BH2 1.00		1
EB2220427-018	12-Jul-2022 00:00	BH2 1.25		1
EB2220427-019	12-Jul-2022 00:00	BH2 1.50		✓
EB2220427-020	12-Jul-2022 00:00	BH2 1.75		✓
EB2220427-021	12-Jul-2022 00:00	BH3 0.0		✓
EB2220427-022	12-Jul-2022 00:00	BH3 0.25		✓
EB2220427-023	12-Jul-2022 00:00	BH3 0.50		1
EB2220427-024	12-Jul-2022 00:00	BH3 0.75		✓
EB2220427-025	12-Jul-2022 00:00	BH3 1.00		✓
EB2220427-026	12-Jul-2022 00:00	BH3 1.25		1
EB2220427-027	12-Jul-2022 00:00	BH3 1.50		1
EB2220427-028	12-Jul-2022 00:00	BH3 1.75		✓
EB2220427-029	12-Jul-2022 00:00	BH4 0.0	1	1
EB2220427-030	12-Jul-2022 00:00	BH4 0.25		✓
EB2220427-031	12-Jul-2022 00:00	BH4 0.50	1	✓
EB2220427-033	12-Jul-2022 00:00	BH4 1.00	1	✓
EB2220427-034	12-Jul-2022 00:00	BH4 1.25		✓
EB2220427-035	12-Jul-2022 00:00	BH4 1.50	✓	✓
EB2220427-036	12-Jul-2022 00:00	BH4 1.75		✓

			SOIL - EA033 Chromium Suite for Acid Sulphate Soils	SOIL - EA037 ASS Field Screening Analysis
EB2220427-037	12-Jul-2022 00:00	BH4 2.00		✓
EB2220427-038	12-Jul-2022 00:00	BH4 2.25	✓	✓
EB2220427-039	12-Jul-2022 00:00	BH5 0.0		✓
EB2220427-040	12-Jul-2022 00:00	BH5 0.50		✓
EB2220427-041	12-Jul-2022 00:00	BH5 0.75		✓
EB2220427-042	12-Jul-2022 00:00	BH5 1.00		✓
EB2220427-043	12-Jul-2022 00:00	BH5 1.25		✓
EB2220427-044	12-Jul-2022 00:00	BH5 1.50		✓
EB2220427-045	12-Jul-2022 00:00	BH5 1.75		✓
EB2220427-048	12-Jul-2022 00:00	BH6 0.0	✓	✓
EB2220427-049	12-Jul-2022 00:00	BH6 0.25		✓
EB2220427-050	12-Jul-2022 00:00	BH6 0.50	✓	✓
EB2220427-051	12-Jul-2022 00:00	BH6 0.75		✓
EB2220427-052	12-Jul-2022 00:00	BH6 1.00	✓	✓
EB2220427-053	12-Jul-2022 00:00	BH6 1.25		✓
EB2220427-054	12-Jul-2022 00:00	BH6 1.50	✓	✓
EB2220427-055	12-Jul-2022 00:00	BH6 1.75		✓
EB2220427-056	12-Jul-2022 00:00	BH6 2.00		✓
EB2220427-057	12-Jul-2022 00:00	BH6 2.25		✓
EB2220427-058	12-Jul-2022 00:00	BH6 2.50	✓	1
EB2220427-059	12-Jul-2022 00:00	BH6 2.75		✓
EB2220427-060	12-Jul-2022 00:00	BH7 0.0		1
EB2220427-061	12-Jul-2022 00:00	BH7 0.25		✓
EB2220427-062	12-Jul-2022 00:00	BH7 0.50		1
EB2220427-063	12-Jul-2022 00:00	BH7 0.75		✓
EB2220427-064	12-Jul-2022 00:00	BH7 1.00		✓
EB2220427-065	12-Jul-2022 00:00	BH7 1.25		✓
EB2220427-066	12-Jul-2022 00:00	BH7 1.50		✓
EB2220427-067	12-Jul-2022 00:00	BH7 1.75		✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

RESULTS & INVOICE

 *AU Certificate of Analysis - NATA (COA) 	Email	mail@preciseenvironmental.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mail@preciseenvironmental.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mail@preciseenvironmental.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mail@preciseenvironmental.com.au
- A4 - AU Tax Invoice (INV)	Email	mail@preciseenvironmental.com.au
- Chain of Custody (CoC) (COC)	Email	mail@preciseenvironmental.com.au
- EDI Format - XTab (XTAB)	Email	mail@preciseenvironmental.com.au

SAMPLE RECEIF	T INFORMATION 8	BOTTLE TYPE

WORKORDER No:

							· · ·				To b	e con	nplete	d by S	ample	Red	/ ceipt		7/22								f				Sample	s chec	kod la	helle		nut i	•
	•			Times				Terr	nperatu				_		•				kagi						Cou	rier D	etails	Mandatory for	Quaranti		trays by		, iu	None.	u unu	puti	
Time	(Onl) Sorting			P, Mobil	& URS) 		Sam	ole Te			6	°C						_		ging T	vpe		No.	Con N	lote:	-	5-			Initial:						
	Placed			1.					Chillin	` a Met	hod -	Circle		\sim	curity S Circle	belov	v				rd Esky			4		ล เ):40	13/7	la Q								
			-						ຈ	•					(Securi Security						m Esk			- 1	Cells s	//		need to be		eted							
Sortin	ıg to Frid	dge Tar	get Tir	ne <1 He	our			Cice	e)/ Ice	Brick	s / No	o Chill	ing	NA (N	lo secu	rity se	al use	;d) -			Other							e entered d mple Rece									
												S	ampl	e Rece	ipt Ac	lvice	Corr	nmei	nts -	To	be con	nple	ted b	oy Sor	ting S	taff					Ξ	Envir		atal f		ien	Π
voc	analys	is may	be co	mprom	nised a	as sa	ample	conta	ainers	conta	ined											· · · ·		-								Enviro Brisba		mari	JIVISI	on	
Detai	ils of ar	y sam	ples d	lamage	ed duri	ing tr	ransit	:																		ŧ						Wor	k Orde				
Othe	r Inform	nation (eg. M	/ere bo	tties r	ecei	ved th	nat we	eren't d	compl	etely	filled)	(eg. lí	samp	le temp	berat	ure is	abo	ve 6	'C a	dd furtl	ner c	detail	here -	- Interr	al use	only -	Not for S	RN):			E	B22	220)42	27	
	3.8	5	• 0	/ 3.	4/	14.	.4																													11 12 1	
	. ,	r					nr	- 7	70	u.	ว่า																										
	7.8, <i>Preci</i>	's C	E	nvir	0 %	1	rt	21	> (`	1.0	a																							2,11	19		
Metals	Bottles: F	= Field fi	tered. T	= Total. I	$N/S = N_0$	ot Spe	cified.		,																						_			- N Ú H			
Ferrous	e Bottles: s Iron, He> igs: S = Sr	avalent C	Chromiu	m & Geos	min and	I MIB:	F = Fiel	d filtered	d. N/S =	Not Spe	cified.	= untre	ateo, me	eaning the	e dox is n	OT TICKE	90.															felephon	e ' + 61-7	7 -324 3 7	222		
	iys. 5 - 51						SD bay	у). L – L	aiye (~b	kg Fivit	bay)								—											· · · · ·	i	·				,	
		-5	;						-G		-0		-P		···· · · · · · · · · · · · · · · · · ·				-RF			-R	GF		-B	0.5L	<u>.</u>			-M	-TO	<u> </u>	-voc		⊢]	
	Soil Jar	Bag Plastic				Nat						Giass	Plastic Purp	Plastic Grey	Bacto				-RT			-R		OH Hexa	NaOH CN	Glass Brown	Fluor Yello	W Fluoro	L E.		-D00	C Vial		EDA	Endo-	DUST	Other
	125mL	White	•	lat Green		Vhite	UT Nut	trients	Green Vial	Glass C		Purp (O&G)	250mL	(PFOS / PFOA)	Black / Thio	6	0mL Niti	ric Rec	d	60n	nL Lab Aci	dified	С	hrome Blue	Blue	CIRCLE	(Sulfid		Marc		Vial H₂\$O₄	H₂SO₄		Viai	Toxin	CuSO4	
Lab No.	250mL	Green			50	00mL			(Geos & MIB)			250ML	125mL	60ml	Grey 250mL	ST	מו	OR	ic	ST	D	ORC		60mL	60mL	Preserved Or	250m	L 125mL (Sulfite	60n	nL .	Purple 40mL	Purple	H.S Y/N	40mL	Tube	UnPres	
		izen /et	1L	500mL 2		1L	Light Green	Turquoi se		100 mL	500 mL	1L.	60mL	250ml	500mL	F	T	F	т	F	TF		ΓF	T	250mL	Pre- preserved	UHS F	Т	F	т	TOC DOC	40mL (VOC)				2.5L 4L	
	C	iry 	<u> </u>	<u> </u>	<u> </u>		(T)	(F)	This line			al indicatio	n of bottle	types rece	ived withou	t specify	ving the ex	xact nur	mber for	reach s	sample. Whe	n using	g this fun	ction tick t	he boxes m	atching the	containers	received for thi	s work ord	ər.		<u> </u>	<u> </u>		<u> </u>	4 L	· · · ·
						1.11	: .												•									÷									· · · · · ·
1																																					
2																																				i — –	
3						i.																															
4																																					
5																			ľ																		
6																																		_			
7																																					
8																																					×
9																																					
10																				T																	

.

×. .

_

.....

ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	CHAIN OF CUSTODY ALS Laboratory: please tick →	□ Sydney: 277 Wood) Ph: 02 8784 8555 E:sa □ Newcastle: 5 Rosey Ph:02 4968 9433 E:sar	mples sydney@i gum Rd, Warabri	alsenviro.com Ph 07 3243 7222 ock NSW 2304 C Townsville;	Shand St, Stafford Q Eisamples brisbane@ 14-15 Desma Ct, Bohl Ei townsville environmer	ĝa¦sen vin lo QLD 4i	a.com Ph: 818 ⊡	13 8549 96 Adelaide:	e: 2–4 Westal: Rd, 00 E: samples.me 2-1 Burma Rd, Po 890 E adelaide@	elbourne@alse ooraka SA 509	envira.com 15	Ph: 08 9209	0 Hod Way, M 9 7665 E:sam ston:27 Wellin 1 2158 E:laun	ale pie ngt	Environr Brisbane Work C EB		erence
IENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS :	Standard TA	AT (List	due date):					FOR	LABORAT	ō			
FICE:	7/14 FREMANTLE ST, BURLEIGH	HEADS 4220			AT may be longer for some lests race Organics)	🛛 Non Standa	rd or urg	ent TAT (List	due date	a):			Cust	ydy Sealânia				*** -
OJECT:	PE3394.22			ALS QUO		1031/16 v4				COC SEQUE	NCE NUMBE	R (Circle) Free	ice/frozenic pl?	el		er;XasiX	X G
	PE3394.22								coc	: 12	34	56	7 Rand	iom Sample J	en en			
JECT MANAGER:				: 0431 565 21					OF:		34	56		r comment				12
	CHRIS BUTLER / SEAN GARDINE	R		MOBILE: 040		RELINQUISHED			REC	EIVED BY:			RELINQUI	SHED BY:				176
c emailed to ALS? (· · · · ·	EDD FORM	MAT (or defai	ult):	CHRIS BUTLER	_	~ ~ .								- elephone	- 61-7-3243	7222
	@preciseenvironmental.com.au					DATE/TIME:	.C	D_ But	DAT	E/TIME:			DATE/TIM	E:				
·	4424, Robina Town Centre 4230				·	13.07.22 9AN	vi								<u> </u>	I		
MMENTS/SPECIAL H	HANDLING/STORAGE OR DISPOSA	AL:																
CONCORT S	SAMPLE DETAILS	Water(W)	MATE	RIX: Solid(S)	CONTAINER INFO	ORMATION	_			RED including						Add	tional Informa	ation
LABID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below	₩E v)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)						ţ.		kely contaminan ples requiring sj	
<u> </u>	BH1	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x	x									
2	BH1	0.25	12.07.22	s	BAG/<4 ⁰ C		1	x										
3	BH1	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x	x									
-	вн1	0.75	12.07.22	s	BAG/<4°C		1	x										
0	BH1	1.00	12.07.22	8	BAG/<4°C		1	x	x				ç	PL.		ATCH		
6	BH1	1.25	12.07.22	S	BAG/<4 ⁰ C		1	x					Tant			•		
7	BH1	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x	х				lest		sp. Bate	-		
ъ	BH1	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x					B22	203	\$20		<u>.</u>	
9	BH1	2.00	12.07.22	8	BAG/<4 ⁰ C		1	x									*	
10	BH1	2.25	12.07.22	s	BAG/<4 ⁰ C		1	x										
11	BH1	2.50	12.07.22	s	BAG/<4°C		1	x	x									
12	BH1	2.75	12.07.22	8	BAG/<4 ⁰ C		1	x						~			2	
											_				-			
		۹											8			1000 1100		
						TOTAL	12					5			-	-		

.

	ALS Laboratory: please tick ->	ALS Laboratory: please tick →	E) Newcastle: 5 Rosegu Ph:02 4968 9433 Etsam	im Rd, Warabr ples.newcastler	ook NSW 2304 Discourse Townsville: @alsenviro.com Ph:07 4796 0600	14-15 Desma E: townsville.er	Ut, Bohle QLD 4 nvronmentel@also	i818 □ nvino.com Ph	Adelaide: h: 08 8359 (: 2-1 Burma Rd. 0890 E:adeia:de	Pooraka SA 5095 @alsen.viro.com	D Pt	Launceston: 2 h: 03 6331 2158	7 Wellington SI, La E: launceston@ai	aundeston TAS 7250 senviro.com
IENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS :	Stand	dard TAT (Lis	t due date):					FORLAB	Contraction of Line of	E ONLY (Circle)
FIÇE:	7/14 FREMANTLE ST, BURLEIGH	HEADS 4220			AT may be longer for some tests race Organica)	Non S	Standard or u	rgent TAT (Lis	t due dat	e):			Custody Se	al Intacl?	Yes No
OJECT:	PE3394.22			ALS QUO	DTE NO.: BP	N031/16 v4				COC SEQU	ENCE NUMBER	(Circle)	Free ice / fr	ozon ka brićke p	resent upon Yes No.
DER NUMBER:	PE3394.22								COC	≎:1 2	3 4 5	67	7 Random S	ample Temperatu nent:	ne og Receipt
OJECT MANAGER			CONTACT:								3 4 5				
MPLER:	CHRIS BUTLER / SEAN GARDIN	ER	SAMPLER				ISHED BY:		REC	CEIVED BY:		RE	LINQUISHE	BY:	RECEIVED BY:
C emailed to ALS?			EDD FORM	AT (or defau	alt):	CHRIS BL		~ ~							
	l@preciseenvironmental.com.au					DATE/TIM		D_But	Ben. DAT	TE/TIME:		DA	TE/TIME:		DATE/TIME:
il Invoice to: PO Bo	x 4424, Robina Town Centre 4230					13.07.2	2 9AM								
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	GAL:													
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INF	ORMATION	4				ng SUITES (NB.) otal (unfiltered bottle r				a) Additional Informati
LABID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belo		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium sulte)						Comments on ilkely contaminant la ditutions, or samples requiring spec analysis etc.
13	ВН2	0.0	12.07.22	5	BAG/<4 ⁰ C		1	x							
14	BH2	0.25	12.07.22	S	BAG/<4 ⁰ C		1	x							
15	BH2	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x							
16	BH2	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x							
17	BH2	1.00	12.07.22	s	BAG/<4 ⁰ C		1	x		-					
18	BH2	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x							
19	BH2	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x							
20	BH2	1.75	12.07.22	s	BAG/<4°C		1	x							
											<u>├</u>				
							1				<u> </u>				
							_				<u> </u>				
						TOTA	1 8								

	CHAIN OF CUSTODY	CHAIN OF CUSTODY	E Sydney: 277 Woodpa Ph 02 8784 8555 E.sam						2-4 Westall Ro 3 E: samples.n			Perth: 10 Ph: 08 9209	Hod Way, Mal 7655 E: sampl	aga WA 6090 es perth@alser	vin com
ALS	ALS Laboratory: please tick ᢣ	ALS Laboratory: please tick ᢣ	 Newcastle: 5 Rosegu Ph·02 4968 9433 Eisann 	n Rd, Warabro	nok NSW 2304 E Townsville: 14-15 Desma C	, Bohle QLD 4	1818 🗆 /	Adelaide: 2	-1 Burma Rd, F 90 E.adelaide@	- Pooraka SA 50	95	🖂 Launces	ton: 27 Welling 1 2158 E: launce	lon St, Launces	iton TAS 7250
CLIENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS : 🔲 Standa	rd TAT (Lis	t due date):								iLY (Circle)
OFFICE:	7/14 FREMANTLE ST, BURLEIGH HI	EADS 4220		(Standard T. e.g., Ultra Ti	AT may be longer for some tests International Non States International I	andard or u	gent TAT (List	due date)	c			Custo	dysteal lintact		Yes No Cartonia
PROJECT:	PE3394.22	<u>.</u>		ALS QUO	DTE NO.: BN031/16 v4				COC SEQUE	NCE NUMB	ER (Circle) Freet	ke/finzen,ke x?**	bricks present	upont Yes 3. No No.
ORDER NUMBER:	PE3394.22								12				om Sample Te		
PROJECT MANAGER:	CHRIS BUTLER		CONTACT:	0431 565 21	10			OF:	12	34	56	7 Other	comment" .		
SAMPLER:	CHRIS BUTLER / SEAN GARDINER		SAMPLER N	OBILE: 040	09 827 396 RELINQUIS	HED BY:		RECE	EIVED BY:			RELINQUI	SHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)		EDD FORM/	AT (or defau			_								
Email Reports to: mail	@preciseenvironmental.com.au				DATE/TIME		D_ Butt	DATE	E/TIME:			DATE/TIM	E:		DATE/TIME:
Mail Invoice to: PO Bo	4424, Robina Town Centre 4230		-		13.07.22	9AM									
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	: 			<u> </u>										
ALSUSEIONEX	SAMPLE DETAILS	Water(W)	MATRI	X: Solid(S)	CONTAINER INFORMATION					-			sted to attract s i filtered bottle rec		Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer Ic codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)							Comments on likely contaminant levels. diutions, or samples requiring specific QC analysis etc.
21	внз	0.0	12.07.22	S	BAG/<4°C	1	x								
22	внз	0.25	12.07.22	s	BAG/<4 ⁰ C	1	×								
23	BH3	0.50	12.07.22	s	BAG/<4 ⁰ C	1	×	-					<u> </u>		
24	BH3	0.75	12.07.22	s	BAG/<4°C	1	x							_	
25	BH3	1.00	12.07.22	s	BAG/<4°C	1	×	_							
26	внз	1.25	12.07.22	8	BAG/<4°C	1	x								
27	внз	1.50	12.07.22	s	BAG/<4 ⁰ C	1	x								
28	внз	1.75	12.07.22	s	BAG/<4°C	1	x								
															•
								-		r					
Nap Boline () Replacedes ()					TOTAL	8									
V = VOA Via! HCI Preserve	P = Unpreserved Plastic; N = Nitric Preserve d; VB = VOA Vial Sodium Bisulphate Preserv Bottle: E = EDTA Preserved Bottles; ST = S	red: VS = VOA Vial Sulfuric Preserved; AV = .	Airfreight Unpreserved Vial SG	= Sulfuric Pre	dium Hydroxide Preserved Plastic; AG = Amber G aserved Amber Glass; H = HCl preserved Plasti	ass Unprese ; HS = HCI	rved; AP - Airfreig preserved Specia	tion bottle;	erved Plastic SP = Sulfuric	Preserved PI	astic; F = Fo	rmaldehyde Pi	reserved Glass		

ALS	CHAIN OF CUSTODY ALS Lebarelary: please tick →	CHAIN OF CUSTODY	 Sydney: 277 Woodpa Ph. 02 8784 8555 Elsair Newcastla: 5 Rosegu Ph:02 4968 9433 Elsair 	iples.sydney@a im Rd, Warabro	nisenviro.com Ph:07 3243 7222 E:san xxk NSW 2304 [] Townsville: 14-15	mples brisbane@also Desma Ct. Bohle QL	tviro.com Ph D 4818 □	.03 8549 96 Adelaide:	ie: 2-4 Westall Ro 600 E. samples n : 2-1 Burma Rd. F 0890 E:adelaide@	nelbourne@al: Pooraka SA 50	senviro.com 195	Ph. 08 9209 El Launces	7655 E: samp ston: 27 Welking	ilaga WA 6090 iles.perth@alser gton St, Launces ceston@atsonvir	sion TAS 7250	
CLIENT:	PRECISE ENVIRONMENTAL					Standard TAT (L	ist due date):					-243	a state of the second second	ORY USE ON	ILY (Circle)	
OFFICE:	7/14 FREMANTLE ST, BURLEIGH H	IEADS 4220		(Standard T) e.g., Ultra Tr		Non Standard or	urgent TAT (Lis	t due dat	e):			Custo	xdy Seel Intac	12	Yeg No I	
PROJECT:	PE3394.22		··· <u>····</u>	ALS QUO	TE NO.: BN031	/16 v4			COC SEQUE		•	recel	4? 4.5.5	e bricks presen		ŪA,
ORDER NUMBER:	PE3394.22								k; 1 2			7 Rand	om Sample T	emperatura on	Receipt 20	
PROJECT MANAGER: SAMPLER:	CHRIS BUTLER	•		0431 565 21 AOBILE: 040		LINQUISHED BY		OF	EIVED BY:	34	56		SHED BY:		RECEIVED BY:	<u>S</u>
COC emailed to ALS?				AT (or defau		RIS BUTLER						INCLING OF	SHED DI.		RECEIVED DT.	
	@preciseenvironmental.com.au					TE/TIME:	DBut	ا DAT	E/TIME:			DATE/TIM	E:		DATE/TIME:	
Mail Invoice to: PO Bo	x 4424, Robina Town Centre 4230				13.	.07.22 9AM		1								
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L:			·			ľ							1	_
TALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	X: Solid(S)	CONTAINER INFORM	IATION			RED includin						Additional Information	
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromlum suite)							Comments on likely contarninant lavels, diutions, or samples requiring specific QC analysis etc.	
29	BH4	0.0	12.07.22	s	BAG/<4°C	1	x	x								
30	BH4	0.25	12.07.22	s	BAG/<4°C	1	x				1					
31	BH4	0.50	12.07.22	s	BAG/<4°C	1	x	x							-	
32	BH4	0.75	12.07.22	s	BAG/<4°C	1	x				1					_
33	BH4	1.00	12.07.22	s	BAG/<4°C	1	x	x								
34	BH4	1.25	12.07.22	s	BAG/<4 ⁰ C	1	x						-			
35	BH4	1.50	12.07.22	s	BAG/<4°C	1	x	x					1			_
36	BH4	1.75	12.07.22	s	BAG/<4 ⁰ C	1	x									
37	BH4	2.00	12.07.22	s	BAG/<4°C	1	x		-							
38	BH4	2.25	12.07.22	s	BAG/<4 ⁰ C	1	x	x								
									-							
					······						<u> </u>	1	1		· · · · ·	
															<u> </u>	
						TOTAL 10							1			
V = VOA Vial HCI Preserve	P ≂ Unpreserved Plastic; N = Nitric Preserv id; VB = VOA Vial Sodium Bisulphate Preser Battle; E = EDTA Breaspied Battler; ST = S	ved; VS = VOA Vial Sulfuric Preserved; AV :	= Airfreight Unpreserved Vial SG	= Sulfuric Pre	lium Hydroxide Preserved Plastic; AG = . served Amber Glass; H = HCl preserve	Amber Glass Unpre ed Plastic; HS = H0	i served; AP - Airfre I preserved Speci	ight Unpre ation bottle	served Plastic a; SP = Sulfuric I	Preserved Pia	l. astic; F = Fo	rmaldehyde P	reserved Glass	s;	1	

CHAIN OF CUSTODY CHAIN OF CUSTODY ALS Laboratory: please fick -> ALS Laboratory: please tick ->

Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 E samples.sydney@aisenviro.com FI Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 D Townsville: 14-55 Desma Ct, Bohle QLD 4818 Ph:02 4969 9433 E:samples newcastie@alserviro.com

Brisbane: 32 Shand St, Stafford QLD 4053 Ph 07 3243 7222 E samples.brisbane@alsenviro.com Ph:07 4796 0600 F, townsville environmental@elsenviro.com Melbourne: 2-4 Westa'l Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph. 08 8359 0890 E:adelaide@alsenv.ro.com

🗆 Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E, samples.perth@alsenviro.com Launceston: 27 Weilington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

FIGE:	7/14 FREMANTLE ST, BURLEIGH	1 HEADS 4220			T may be longer for some tests ace Organics)	Non Stand	lard or un	gent ⊺AT (Lis	t due date)):			Gusto	dy Seel Intect	n Sterr	Yes so No
DJECT:	PE3394.22			ALS QUOT		031/16 v4				COC SEQU	ENCE NUM	BER (Circle	Free receiv	ke / frozenike 47	brickspresen	upon Yes No
DER NUMBER:	PE3394.22								COC:	12	34	56	7 Rand	om Sample Te	mperature on	LY-(Circle) Has soore Vee No Receive
	R: CHRIS BUTLER			0431 565 210					OF:	12	34	56	7 Othe	comment		
MPLER:	CHRIS BUTLER / SEAN GARDINE	ER		MOBILE: 040		RELINQUISHE			RECI	EIVED BY:			RELINQUI	SHED BY:		RECEIVED BY:
C emailed to ALS			EDD FORM	AT (or defau		CHRIS BUTLEI DATE/TIME:		D_But	4. DATE	ETIME:			DATE/TIM	E .		DATE/TIME:
-	all@preciseenvironmental.com.au					13.07.22 9A		L Cm					DATE	L.		DATE) HWE
	L HANDLING/STORAGE OR DISPOS	SAL:											<u> </u>			······
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INFO	RMATION								sted to attract s		Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)	-						Commenta on likely contaminant leve diutions, or samples requiring specifi analysis etc.
39	BH5	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x								
40	BH5	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x								
41	BH5	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
42	BH5	1.00	12.07.22	s	BAG/<4 ⁰ C		1	x				1				
43	ВН5	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
44	BH5	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x				-				
43	BH5	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
46	BH5	2.00	12.07.22	s	BAG/<4°C		1	x								
47	BH5	2.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
														L		
										1						
											ļ	<u>_</u>				
					, where the same processing of the state of the state of the						ļ					
						TOTAL	9									

	ALS Laboratory: please tick ᢣ	ALS Laboratory: please tick 🗲	 Newcastle: 5 Roscgu Ph:02 4968 9433 E:sam 	11 Newcastle: 5 Rosogum Rd, Warabrook NSW 2304 🔲 Townsville: 14-15 Desma Cd, Bohle OLD 4818 🔲 Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ph:02 4968 9433 Eisamples.newcastle@alsenviro.com Ph.07 4796 0600 Ei townsville onvironmerta@eterwko.com Ph.08 8359 0890 E adelaide@alsenviro.com									Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E: saunceston@alsenviro.com					
IENT:	PRECISE ENVIRONMENTAL				OUND REQUIREMENTS :	Stand	ard TAT (List	due date):					FOR LABORA	TORY USE O	NLY (Circle)			
FICE:	7/14 FREMANTLE ST, BURLEIGH	HEADS 4220		(Standard T/ e.g., Ultra Tr	AT may be longer for some tests race Organics)								Custody Seal Int		Yes No.			
OJECT:	PE3394.22			ALS QUO		BN031/16 v4					ENCE NUMBER (C	ircle}	Freelice/Inbzen receipt?	ice bricks preser	No Yess			
DER NUMBER:	PE3394.22								coo	: 12	3 4 5		7 Random Sample Temperature on Receipt:					
OJECT MANAGER:	CHRIS BUTLER		CONTACT:	0431 565 21	0				OF	: 12	345	67	Other comment.					
MPLER:	CHRIS BUTLER / SEAN GARDINE	R	SAMPLER MOBILE: 0409 827 396			RELINQUISHED BY:			RECEIVED BY:				QUISHED BY	:	RECEIVED BY:			
C emailed to ALS?	(YES / NO)		EDD FORM	AT (or defau	llt):	CHRIS BU						Į						
all Reports to: mall	@preciseenvironmental.com.au					DATE/TIM	\sim	D_But	DAT	E/TIME:		DATE	TIME:		DATE/TIME:			
I Invoice to: PO Bo	x 4424, Robina Town Centre 4230					13.07.22	9AM											
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL:																
ALS USE ONLY	SAMPLE DETAILS	Water(W)	MATRIX: Solid(S) CONTAINER INF			FORMATION					n g SUITES (NB. Sui otal (unfiltered bottle requ				Additional Information			
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME		TYPE & PRESERVA (refer to codes belo			EA037 (pHF and pHFOX)	EA033 (Chromium suite)						Comments on likely contaminant levels, dilutions, or samples requiring specific C analysis etc.			
48	BH6	0.0	12.07.22	\$	BAG/<4°C		1	x	x									
49	BH6	0.25	12.07.22	5	BAG/<4 ⁰ C		1	x										
50	BH6	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x	x									
51	BH6	0.75	12.07.22	s	BAG/<4°C		1	x										
52	BH6	1.00	12.07.22	\$	BAG/<4°C		1	x	x									
53	BH6	1.25	12.07.22	8	BAG/<4°C		1	x										
54	BH6	1.50	12.07.22	8	BAG/<4 ⁰ C		1	x	x									
55	BH6	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x							1			
56	ВН6	2.00	12.07.22	s	BAG/<4 ⁰ C		1	×										
57	ВН6	2.25	12.07.22	s	BAG/<4°C		1	x		-	<u> </u>							
54	вн6	2.50	12.07.22	s	BAG/<4 ⁰ C		1	x	x									
54	BH6	2.75	12.07.22	s	BAG/<4 ⁰ C		1	x										
a an		arved Plastic; ORC = Nitric Preserved ORC; S				TOTAL	12											

	CHAIN OF CUSTODY ALS Laboratory: please tick →	Ph: 02 8784 8555 Eisamp D Newcastle: 5 Rosegur	Sydney: 277 Woodpark Rd, Smithfield NSW 2176 L Brisbane 32 Shand St. Stafford OLD 4053 Ph. 02 8764 2555 Essemples sydney@alsenviro.com Newcastle: 5 Roscgurn Rd, Waratrook NSW 2304 Townsville: 14-15 Desma CJ, Bohle OLD 4818 Adelxide: 2-1 Burne Rd, Poraka S 5055 Ph. 02 9699 1035 Essembles newcastle@alsenviro.com Ph. 03 9699 1035 Essembles newcastle@alsenviro.com Ph. 03 9699 1035 Essembles newcastle@alsenviro.com Ph. 03 9699									Ph: 08 9209	Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9299 7655 E: samples perth@alsenviro.com Laurceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6321 2158 E: launceston@alsenviro.com								
	PRECISE ENVIRONMENTAL																				
OFFICE:	7/14 FREMANTLE ST, BURLEIGH H	FADS 4220	·····	(Standard T/	AT may be longer for some tests	Standard TAT (List due date): Non Standard or urgent TAT (List due date):							FOR LABORATORY USE ONLY (Circle)								
PROJECT:	PE3394.22			e.g Ultra Tr ALS QUO	race Organics) DTE NO · B	N031/16 v4		jen i Ali (Lis i		COC SEQUE		FR (Circle	Clabody Seal Mart/?								
ORDER NUMBER:	PE3394.22			1120 400						1 2		•		pt? om Sample Te							
PROJECT MANAGER:	CHRIS BUTLER		CONTACT: 0431 565 210						OF:	1 2	34	56			adarta da ante da ante						
SAMPLER:	CHRIS BUTLER / SEAN GARDINER		SAMPLER MOBILE: 0409 827 396				SHED BY:		RECE	IVED BY:			RELINQUISHED BY:			RECEIVED BY:					
COC emailed to ALS?	(YES / NO)	EDD FORMAT (or default):			CHRIS BUTLER																
Email Reports to: mail	@preciseenvironmental.com.au					DATE/TIME: Ch_Butter						DATE/TIM	E:		DATE/TIME:						
Mail Invoice to: PO Bo	x 4424, Robina Town Centre 4230					13.07.22	2 9AM														
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	L:																			
ALSUSEONITY SAMPLE DETAILS Water(W)			MATRIX: Solid(S) CONTAINER IN			ORMATION	1							sted to attract s differed bottle red		Additional Information					
LAB ID	SAMPLE (D	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes beic			He	EA033 (Chromium suite)							Commente on likely contaminant levels. diutions, or samples requiring specific QC analysis etc.					
60	BH7	0.0	12.07.22	s	BAG/<4°C		1	x													
61	BH7	0.25	12.07.22	s	BAG/<4 ⁰ C		1	x								-					
62	BH7	0.50	12.07.22	s	BAG/<4 ⁰ C		1	x													
63	BH7	0.75	12.07.22	s	BAG/<4°C		1	x													
64	BH7	1.00	12.07.22	s	BAG/<4 ⁰ C		1	х													
65	BH7	1.25	12.07.22	s	BAG/<4°C		1	×													
66	BH7	1.50	12.07.22	s	BAG/<4 ⁰ C		1	x													
67	BH7	1.75	12.07.22	s	BAG/<4 ⁰ C	· · · · · · · · · · · · · · · · · · ·	1	x													
· · ·																					
													+ • • •								
													-								
						τοται	8									· · · · · · · · · · · · · · · · · · ·					
V = VOA Vial HCI Preserve	ed; VB = VOA Vial Sodium Bisulphate Presen	ed Plastic; ORC = Nitric Preserved ORC; SH ved; VS = VOA Vial Sulfuric Preserved; AV = / vedia Bottle: ASS = Plastic Banc for Acid Suld		ved; S≖Sod Sulfuric Pre	lium Hydroxide Preserved Plastic; served Amber Glass; H = HCl p	AG = Amber (Glass Unpreser	ed; AP • Airfreig eserved Specia	ght Unprese tion bottle; 3	rved Plastic SP = Sulfuric	Preserved Pl	astic; F = Fo	rmaldehyde P	reserved Glass	:	<u> </u>					

	ALS Laboratory: please tick ->	Ph.02 4968 9433 E samples newcastle@alserviro.com Ph.07 4766 0600 E: townsvite anvironmental@alserviro.com Ph.08 459 0890 E adelaide@alserviro.com										ilsenvro com 5095	Ph: 08 9209	10 Hod Way, Mal 09 7655 E: sample eston: 27 Welling 331 2158 E: launce	pie nat	Work Order Refer		
FFICE:			200000	RLABORATO	102													
ROJECT:	7/14 FREMANTLE ST, BURLEIGH PE3394.22	HEADS 4220		e.g., Ultra Tr	TAT may be longer for some tests Trace Organics)	Non Standa	ard or un	jent TAT (List	due da'			2500	tody Seel Intact					
RDER NUMBER:	PE3394.22			ALS QUO	/TE NO.: BN	N031/16 v4					UENCE NUMBE	•	recei	e ice / frozen ice sipt?	551			
ROJECT MANAGER:		u	CONTACT:	0431 565 21	210				C	OC: 1 2			1. Sec.	ntom Sample Te er commente				
AMPLER:	CHRIS BUTLER / SEAN GARDINE	IRIS BUTLER / SEAN GARDINER SAMPLER MOBILE: 0409 827 396 RELINQUISHED BY: RECEIVED BY: RECEIVED BY: RELINQUISHED BY:								Read an entry of the second	<u>#</u>							
OC emailed to ALS?		······································	EDD FORM	IAT (or defau	.ult):	CHRIS BUTLER	R											
	il@preciseenvironmental.com.au					DATE/TIME:	\sim	D_ Butt	DA' مىن	TE/TIME:			DATE/TIM	AE:		*elephone * + 61-7-3243 7		
	ox 4424, Robina Town Centre 4230				······	13.07.22 9AM	M								<u> </u>	<u> </u>		
JMMENTS/SPECIAL	L HANDLING/STORAGE OR DISPOS/	AL:				_												
ALS USE ONEN	SAMPLE DETAILS	Water(W)	MATRI	IX: Solid(S)	CONTAINER INFO					UIRED includin						Additional Informa		
LABID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to oodes below)	IVE)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)						4.r	Commerts on likely contaminant ditutions, or samples requiring sp analysis etc.		
	BH1	0.0	12.07.22	s	BAG/<4 ⁰ C		1	x	x	, <u> </u>								
2	BH1	0.25	12.07.22	5	BAG/<4 ⁰ C		1	x			· · · · · ·	<u> </u>	+.	+	<u> </u>	1		
3	ВН1	0.50	12.07.22	s	BAG/<4 ^o C		1	×	x	+'	├	t	+	+'				
4	ВН1	0.75	12.07.22	8	BAG/<4°C		1	x		'	<u>├</u> ───┥	<u>+</u>	+	+'				
5	ВН1			-						'	—			्राष्ट्रकृत् हुन्				
		1.00	12.07.22	s	BAG/<4 ⁰ C		1	x	x	'	<u> </u> '					ATCH		
6	BH1	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x		1	1	.	Test	Τ '				
7	BH1	1.50	12.07.22	s	BAG/<4°C		1	x	x						c. Bate			
ъ	BH1	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x	7				<u>-</u> B2;	2205	20			
9	вн1	2.00	12.07.22	s	BAG/<4 ⁰ C		1	x								1		
10	BH1	2.25	12.07.22	s	BAG/<4°C		1		<u> </u>	1	<u>├</u> ──┤	t			 			
11	ВН1	2.50	12.07.22	s	BAG/<4 °C		1	x	x	'	──┤	 		<u> </u>	──	+		
12	ВН1	2.75	12.07.22	s	BAG/<4 C BAG/<4 ⁰ C		1	×		'	────			+	 			
· #•		2.13	12.01.22	+	BAG/<4~C		1 4 3		- -	N 57597 100	!	 				i		
	<u> </u>		·	<u> </u>	 			ΔP			<u>ا</u> ا	ļ		//		R		
		:			1	_	<u> </u>	1997 IT 18 19 1	4월 17 18 19 17	4 (kara 2007)	1	1	1	和同时	<u>,</u>			
						TOTAL	12			+		1		+		· ***		

· (

8,

Ē

0 1

9.
	ALS Laboratory: please tick 🤿	ALS Laboratory: please tick →	D Newcastle: 5 Roseg Ph:02 4968 9433 Eisan			15 Desma Ct, Bohle QL, townsville.environmenta@a			le: 2-1 Burma Rd. 9 0890 E adelaide		Ph. 03 6331	on: 27 Wellington St, Lau 2158 E: launceston@alse	anviro.com	
NT:	PRECISE ENVIRONMENTAL					Standard TAT (L	ist due date):					LABORATORY USE		
CE:	7/14 FREMANTLE ST, BURLEIGH I	HEADS 4220		e.g., Ultra Tr		Non Standard of	urgent TAT (List	due da			Custor	y Seal Macl?		Yes
JECT:	PE3394.22			ALS QUO	TE NO.: BN0	31/16 v4	···· ·			ENCE NUMBER (Circle	receipt	e / hozen e e opore pre ?	sencupon	Yes No.
ER NUMBER:	PE3394.22									3 4 5 6	7 IRando	m sampie remperature	ou keceibi	42.2°C
JECT MANAGER:				0431 565 21						3 4 5 6		comment		
PLER:	CHRIS BUTLER / SEAN GARDINER	۲		MOBILE: 040		ELINQUISHED BY	:	RE	ECEIVED BY:		RELINQUIS	HED BY:	R	ECEIVED BY:
emailed to ALS?	· · · · · · · · · · · · · · · · · · ·		EDD FORM	IAT (or defau	,	HRIS BUTLER	\sim 0 4							
-	@preciseenvironmental.com.au						D_ But	ال سے ∪≓	ATE/TIME:		DATE/TIME			ATE/TIME:
······	x 4424, Robina Town Centre 4230	······································	· · · · · · · · · · · · · · · · · · ·		T	3.07.22 9AM			·					· · · · · · · · · · · · · · · · · · ·
MENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L:												
A SUSE ONCY	SAMPLE DETAILS	Water(W)	MATR	IX: Solid(S)	CONTAINER INFOR	RMATION				ng SUITES (NB. Suite Co				Additional Informat
											T I			ts on likely contaminant
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIV (refer to codes below)		EA037 (pHF and pHFOX)	EA033 (Chromium suite)					dilutions, analysis (or samples requiring spe
13	BH2	0.0	12.07.22	s	BAG/<4°C	1	x							
14	BH2	0.25	12.07.22	\$	BAG/<4 ⁰ C	1	x							
15	BH2	0.50	12.07.22	s	BAG/<4 ⁰ C	1	x							
16	BH2	0.75	12.07.22	s	BAG/<4 ⁰ C	1	×							
17	BH2	1.00	12.07.22	s	BAG/<4°C	1	×							
18	BH2	1.25	12.07.22	s	BAG/<4 ⁰ C	1	×							
19	BH2	1.50	12.07.22	s	BAG/<4 ⁰ C	1	x							
20	BH2	1.75	12.07.22	5	BAG/<4 ⁰ C	1	x							
									-					
							+ +				-			
						·						<u> </u>		

Water container cades: P = uppreserved Plastic; N = Nitric Preserved Plastic; UKC = Nitric Preserved CV; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide/Cd Preserved Plastic; AS = Amber Glass; H = HCI preserved Plastic; SH = Static Plasti

ALS)	ALS Laboratory: please tick >	ALS Leboratory: please tick →	Newcastle: 5 Roseç Ph:02 4968 9433 Eisan	nples.newcastle@	alsenviro.com Ph:07 4796 0600 E	4-15 Desma Gl, Bo E. townsville.environm				ie: 2-1 Burma Rd, 9 0890 E:adelaide			Ph 03 633	ton: 27 Wallington 1 2158 E: launcesto	n@alsenvi	ro.com
NT:	PRECISE ENVIRONMENTAL	-				Standard T							FOR	LABORATOR	USE O	(LY (Circle)
CE:	7/14 FREMANTLE ST, BURLEIGH H	EADS 4220		e.g. Ultra Tra	T may be longer for some tests ace Organics)	Non Stand	land or ur	gent TAT (List	due d				Cust	xly Seal Intact?	1.225	Yes, All Not
JECT:	PE3394.22			ALS QUOT	TE NO.: BN	031/16 v4					IENCE NUMB		neceli	cə/irozan cəcri ol?	ks preser	ti ven stander Hoto Kupon Recept
	PE3394.22								C	OC: 1 2	34	56	7 Rand	om Sample Temp	erature on	Receipt
JECT MANAGER:		·		: 0431 565 210						DF: 1 2	34	56			5.237	
PLER:	CHRIS BUTLER / SEAN GARDINER			MOBILE: 040		RELINQUISHE			R	ECEIVED BY:			RELINQUI	SHED BY:		RECEIVED BY:
emailed to ALS? (· · · · · · · · · · · · · · · · · · ·	·	EDD FORM	IAT (or defaul		CHRI\$ BUTLE								_		
	preciseenvironmental.com.au	· · · · · · · · · · · ·				DATE/TIME:		D_Butt	لید D،	ATE/TIME:			DATE/TIM	E:		DATE/TIME:
Invoice to: PO Box	4424, Robina Town Centre 4230					13.07.22 9A	NМ						<u>i</u>			
MENTS/SPECIAL F	IANDLING/STORAGE OR DISPOSAL	.:														
USDSEONO	SAMPLE DETAILS	Water(W)	MATE	RIX: Solid(S)	CONTAINER INFO	RMATION					-			sted to attract suite d filtered bottle require		Additional Informati
		r		· · · · · · · · · · · · · · · · · · ·							1	<u> </u>			7	Comments on likely contaminant le
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below		TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)							ditutions, or samples requiring spe analysis etc.
21	внз	0.0	12.07.22	8	BAG/<4 ⁰ C		1	x								
22	внз	0.25	12.07.22	s	BAG/<4 ⁰ C		1	x								
23	BH3	0.50	12.07.22	S	BAG/<4 ⁰ C		1	x								
24	внз	0.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
25	внз	1.00	12.07.22	s	BAG/<4 ⁰ C		1	x								
26	внз	1.25	12.07.22	s	BAG/<4 ⁰ C		1	x				-				
27	внз	1.50	12.07.22	S	BAG/<4 ⁰ C		1	x								
28	внз	1.75	12.07.22	s	BAG/<4 ⁰ C		1	x								
									_							
<u> </u>																
											-	1				
				-	<u> </u>						<u> </u>			1		
				+ +												
											1					

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ONC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; SH = Nitric Preserved Plastic; NC = Nitric Preserved Plastic; SH = Formaldehyde Preserved Reserved Plastic; NS = Amber Glass; H = HCl preserved Plastic; SH = HCl preserved Plastic; SH = Sodium Studying Preserved Plastic; SH = Amber Glass; H = HCl preserved Plastic; SH = Sodium Studying Preserved Plastic; SH = HCl preserved Plastic; SH = Sodium Studying Preserved Plastic; SH = HCl preserved Plastic; SH = HCl preserved Plastic; SH = Sodium Studying Preserved Plastic; SH = HCl preserved Plastic; SH = Sodium Static; SH = Sodiu

.

> **`**

•

CHAIN OF CUSTODY CHAIN OF CUSTODY

ALS Laboratory: please tick -> ALS Laboratory: please tick ->

□ Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph. 02 8724 8555 E, samples.sydney@aisenviro.com □ Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ph.02 4968 9435 E: samples.newcastle@alsenviro.com

Brishane: 32 Shand St; Stafford QLD 4053
Pn 07 3243 7222 Examples brisbane@alsenwire.com
 Townsville: 14-15 Desma Ct; Bohle QLD 4818
Ph 07 4796 0600 E; townadlie environmente@elsenwire.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171
Ph:03 8549 9600 E samples melbourno@alsenviro.com
 Adelaide: 2-1 Burna Rd, Pocraka SA 5095
Ph:08 8359 0Esdelaide@alsenviro.com

Perth: 10 Hod Way, Malaga WA 6090
Ph: 06 9209 7655 E: samples.perth@alsenviro.com
Launceston; 27 Wellington St, Launceston TAS 7250

Ph. 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	PRECISE ENVIRONMENTAL		TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		FOR LABORATORY, USE ONLY	Circle)
OFFICE:	7/14 FREMANTLE ST, BURLEIGH HEADS 4220		(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List du	e date):	Custody Seal Intact?	Yes No
PROJECT:	PE3394.22		ALS QUOTE NO.:	BN031/16 v4	COC SEQUENCE NUMBER (Circle)	Free ice / frozen ice bricks present upon receipt?-	Yes No.
ORDER NUMBER:	PE3394.22				COC; 1 2 3 4 5 6	7 Random Sample Temperature on Rese	pC
PROJECT MANAGER	: CHRIS BUTLER	CONTACT: 0	431 565 210		OF: 1 2 3 4 5 6	7 Other comment	
SAMPLER:	CHRIS BUTLER / SEAN GARDINER	SAMPLER M	OBILE: 0409 827 396	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS?	Y (YES / NO)	EDD FORMA	T (or default):	CHRIS BUTLER			
Email Reports to: ma	il@preciseenvironmental.com.au			DATE/TIME: Deutee	DATE/TIME:	DATE/TIME:	DATE/TIME:
Mail Invoice to: PO Be	ox 4424. Robina Town Centre 4230			13.07.22 9AM	1		

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALSIUSE ONLY	SAMPLE DETAILS	Water(W)	MATRIX	K: Solid(S)	CONTAINER INFORMATION				-		sted to attract suite price) d filtered bottle required).	Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)				Comments on likely contaminant levels, dilutions, or samples requiring specific Q(analysis atc.
29	BH4	0.0	12.07.22	s	BAG/<4°C	1	x	x				
30	BH4	0.25	12.07.22	s	BAG/<4 ⁰ C	1	x					
31	BH4	0.50	12.07.22	s	BAG/<4 ⁰ C	1	x	x				
	BH4	0.75	12.07.22	s	BAG/<4 ⁰ C	1	x					
_	BH4	1.00	12.07.22	s	BAG/<4 ⁰ C	1	x	x				
34	BH4	1.25	12.07.22	s	BAG/<4 ⁰ C	1	x					
35	BH4	1.50	12.07.22	5	BAG/<4 ⁰ C	1	x	x				
36	BH4	1.75	12.07.22	s	BAG/<4 ⁰ C	1	x					
37	BH4	2.00	12.07.22	8	BAG/<4 ⁰ C	1	x					
38	BH4	2.25	12.07.22	s	BAG/<4 ⁰ C	1	x	x				
					TOTAL	10						

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AB = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Plastic; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solits; B = Unpreserved Bag.

۰,

CHAIN OF CUSTODY CHAIN OF CUSTODY

ALS Laboratory: please tick 🗲 ALS Laboratory: please tick 🔿

□ Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 E.samples.sydney@alsenviro.com Nowcastle: 5 Rosegum Rd, Warabrook NSW 2304
 Ph:02 4968 9433 E.samples.newcastle@alsenviro.com

B Brisbane: 32 Shand St, Slafford QLD 4053 Ph.07 3243 7222 Etsamples.brisbane@alsenviro.com Townsville: 14-15 Desma Ct, Bohle QLD 4818
 Ph:07 4796 0500 E: townsville environmental@alserviro.com D Melbourne 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alservice.com Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsen.viro.com Launceston: 27 Wellington St. Launceston TAS 7250
 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	PRECISE ENVIRONMENTAL		TURNAROUND REQUIREME	NTS : 🔲 Standard TAT (List due date):		FOR LABORATORY USE ONLY	(Circle)
OFFICE:	7/14 FREMANTLE ST, BURLEIGH HEADS 4220		(Standard TAT may be longer for so e.g., Ultra Trace Organics)	me tests D Non Standard or urgent TAT (List d	lue date):	Custody Seal Intact?	Yes No.
PROJECT:	PE3394.22		ALS QUOTE NO .:	BN031/16 v4	COC SEQUENCE NUMBER {Circle	Ereelice / frozen ice bricke protent upo accept?	Yes No
ORDER NUMBER:	PE3394.22				COC: 1 2 3 4 5 6	7 Randdin Sample Temperature on Rece	ptC
PROJECT MANAGER	R: CHRIS BUTLER	CONTACT: (431 565 210		OF: 1 2 3 4 5 6	7 Other comment	
SAMPLER:	CHRIS BUTLER / SEAN GARDINER	SAMPLER N	OBILE: 0409 827 396	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS	? (YES / NO)	EDD FORMA	T (or default):	CHRIS BUTLER			
Email Reports to: ma	ail@preciseenvironmental.com.au			DATE/TIME: Date	DATE/TIME:	DATE/TIME:	DATE/TIME:
Mail Invoice to: PO B	lox 4424. Robina Town Centre 4230			13.07.22 9AM	1		

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE ONEN-	SAMPLE DETAILS	Water(W)	MATRIX	: Solid(S)	CONTAINER INFORMATION				•		les must be lis Dissolved (field		Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)		-			Comments on likely contaminant levels, diutions, or samples requiring specific QC analysis etc.
39	BH5	0.0	12.07.22	s	BAG/<4 ⁰ C	1	x						
40	BH5	0.50	12.07.22	5	BAG/<4 ⁰ C	1	x						
41	BH5	0.75	12.07.22	s	BAG/<4°C	1	x						
42	BH5	1.00	12.07.22	8	BAG/<4 ⁰ C	1	x						
43	BH5	1.25	12.07.22	s	BAG/<4 ⁰ C	1	x						
44	BH5	1.50	12.07.22	s	BAG/<4 ⁰ C	1	x					 	
43	BH5	1.75	12.07.22	s	BAG/<4°C	1	x						
SNR	BH5	2.00	12.07.22	5	BAG/<4 ⁰ C	1	x						
SNR	BH5	2.25	12.07.22	s	BAG/<4°C	1	x						
													_
an di nasing si sa na si s San si sa si sa sa sa si s					LATOT	9							

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC, SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AB = Amber Glass Unpreserved; AP = Airfreight Unpreserved Plastic; F = Formaldehyde Preserved Val SG = Sulturic Preserved Val SG = Sulturic Preserved Val SG = Sodium Hydroxide Preserved Val SG = Sodium Hydroxide Preserved Val SG = Sulturic Preserved Plastic; H = HCl pres

.

CHAIN OF CUSTODY CHAIN OF CUSTODY

ALS Laboratory: please tick -> ALS Laboratory: please tick 🔿 Sydney: 277 Woodpark Rd. Smithfield NSW 2176 Phr 02 8784 8555 Eisamples.sydney@alsenviro.com Newcastle: 5 Rosegum Rd, Warabrook NSW 2304
 Townsville: 14-15 Desma Ct, Bohle QLD 4818

Brisbane: 32 Shand St, Stafford QLD 4053 Ph:07 3243 7222 E.samples.brisbane@alsenviro.com Ph:02 4968 9433 E:samples.newcastle@alsenviro.com Ph.07 4796 0600 E: townsvtlle.enviro.mentat@alsenviro.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph.03 8549 9600 E: samples.melbcurne@alsenvro.com D Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ph: 08 8359 0890 E:adeiaide@alsenviro.com

Perth: 10 Hod Way, Malaga WA 6090 Ph: 06 9209 7655 E: samples.perth@elsenviro.com Launceston: 27 Wellington St, Launceston TAS 7250
 Ph: 03 6331 2158 E: launceston@alsenviro.com

-				-								THE T PROTECTION AND A DESCRIPTION OF THE AVER
CLIENT:	PRECISE ENVIRONMENTAL			NAROUND REQUIREMENTS :	Standard TAT (Lis	st due date):					R LABORATORY USE	DNEY (Circle)-
OFFICE:	7/14 FREMANTLE ST, BURLEIGH HI	EADS 4220		lard TAT may be longer for some tes Illra Trace Organics)	Non Standard or U	irgent TAT (List d	ue date):				tody Seal Intact?	· 在中国的中国公式上的市场。 《日本·西方·西方·西方·西方·西方·西方·西方·西方·西方·西方·西方·西方·西方·
PROJECT:	PE3394.22		ALS	QUOTE NO.:	BN031/16 v4		COC SE	QUENCE NU	MBER (Circ	ie) Nece	e ice / frozen ce bricks pros sipt?	
ORDER NUMBER:	PE3394.22						COC: 1	2 3	4 5 6	37 Ran	dom Sample Temperature	on Receipt:
PROJECT MANAGER:	CHRIS BUTLER		CONTACT: 0431 5	65 210			OF: 1	2 3	4 5 0	s 7 Q15	er comment	
SAMPLER:	CHRIS BUTLER / SEAN GARDINER		SAMPLER MOBILE	E: 0409 827 396	RELINQUISHED BY:		RECEIVED B	IY:		RELINQU	JISHED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	· ·	EDD FORMAT (or	default):	CHRIS BUTLER							
Email Reports to: mail	@preciseenvironmental.com.au					D_ Butte	DATE/TIME:			DATE/TI	ME:	DATE/TIME:
Mail Invoice to: PO Bo	x 4424, Robina Town Centre 4230				13.07.22 9AM							
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL											
AUSUSEIONLY	SAMPLE DETAILS	Water(W)	MATRIX: Soli	d(S) CONTAINER	INFORMATION			-	-		listed to attract suite price)	Additional Information
			×	4	TLES	pHFOX)	m suite)					Comments on likely contaminant levels ditutions, or samples requiring specific (analysis etc.

LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLE	EA037 (pHF and pHFO	EA033 (Chromlum suit					
48	BH6	0.0	12.07.22	s	BAG/<4 ⁰ C	1	x	x					
	вне	0.25	12.07.22	s	BAG/<4 ⁰ C	1	x						
56	BH6	0.50	12.07.22	s	BAG/<4 ⁰ C	1	x	x					
	BH6	0.75	12.07.22	\$	BAG/<4 ⁰ C	1	x						
52	BH6	1.00	12.07.22	s	BAG/<4°C	1	×	x			 	 	
53	BH6	1.25	12.07.22	s	BAG/<4 ⁰ C	1	×						
54	BH6	1.50	12.07.22	s	BAG/<4 ⁰ C	1	x	×					
65	BH6	1.75	12.07.22	s	BAG/<4°C	1	x					 	
56	BH6	2.00	12.07.22	s	BAG/<4 ⁰ C	1	x				 		
57	BH6	2.25	12.07.22	S	BAG/<4°C	1	×					 	
54	BH6	2.50	12.07.22	s	BAG/<4°C	1	x	x					
(mm -	BH6	2.75	12.07.22	8	BAG/<4°C	1	x						
								<u> </u>					
	e persona de la composición de la comp Nota de la composición				TOTAL	12				-			

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AS = Amber Glass Unpreserved; AP - Altreight Unpreserved Plastic; Preserved Plastic; V = VOA Vial Sodium Hydroxide/Cd Preserved Vial SC = Sudiuric Preserved Plastic; AS = Amber Glass Unpreserved; VB = VOA Vial Sodium Hydroxide/Cd Preserved; VB = VOA Vial HCl Preserved; VB = VOA Vial Sodium Hydroxide/Cd Preserved Vial SC = Sudiuric Preserved Plastic; H = HCl preserved; VB = HCl preserved; AB - Altreight Unpreserved Plastic; F = Formaldehyde Preserved; VB = VIA Vial Sodium Hydroxide Preserved Vial SC = Sudiuric Preserved Amber Glass; H = HCl preserved Plastic; H = HCl preserved Plastic; ST = Storile Bottle; ST = Storile

CHAIN OF CUSTODY CHAIN OF CUSTODY

ALS Laboratory: please tick ->

ALS Laboratory: please tick 🚽

Sydney: 277 Woodpark Rd. Smithfield NSW 2176 Pb. 02 8784 8555 E samples.sydney@alsenviro.com Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ph:02 4968 9433 Esamples newcastle@alsenviro.com

Brisbane: 32 Shand St, Stafford QLO 4053 Ph:07 3243 7222 E:samples.brisbane@alsenviro.com Townsville: 14-15 Desma Ct, Bohle QLD 4818 Ph:07 4796 0600 E: townsville.erveonmental@alsenviro.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com Adolaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

D Perth: 10 Hod Way, Malaga WA 6090 Ph. 08 9209 7655 E: samples.perth@alsenviro.com C Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	PRECISE ENVIRONMENTAL	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		FOR LABORATORY USE ONLY	(Circle)
OFFICE:	7/14 FREMANTLE ST, BURLEIGH HEADS 4220	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List du	e date):	Custody Seal intact?/us-j +	L.C.Yes -⊨ ∦No
PROJECT:	PE3394.22	ALS QUOTE NO.: B	N031/16 v4	COC SEQUENCE NUMBER (Circle)	Free ice / frozen ice bricks present (go) receipt?	Yes No
ORDER NUMBER:	PE3394.22			COC: 1 2 3 4 5 6	7 Random Sample Temperature on Rece	opt and the second s
PROJECT MANAGER:	CHRIS BUTLER CONTACT: (0431 565 210		OF: 1 2 3 4 5 6	7 Other comment	
SAMPLER;	CHRIS BUTLER / SEAN GARDINER SAMPLER N	IOBILE: 0409 827 396	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS? (YES / NO) EDD FORMA	(or default):	CHRIS BUTLER			
Email Reports to: mail@	Dereciseenvironmental.com.au		DATE/TIME: D Butter	DATE/TIME:	DATE/TIME:	DATE/TIME:
Mail Invoice to: PO Box	: 4424, Robina Town Centre 4230		13.07.22 9AM		1	

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

AUSIUSEIONLY	SAMPLE DETAILS	Water(W)	MATRIX	: Solid(S)	CONTAINER INFORMATION						isted to attract suite price) Id filtered bottle required).	Additional Information
LAB ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA037 (pHF and pHFOX)	EA033 (Chromium suite)				Comments on likely contaminant levels, diutions, or samples requiring specific Q analysis etc.
60	BH7	0.0	12.07.22	s	BAG/<4 ⁰ C	1	x					
61	вн7	0.25	12.07.22	s	BAG/<4 ⁰ C	1	x					
62	BH7	0.50	12.07.22	s	BAG/<4 ⁰ C	1	x					
63	BH7	0.75	12.07.22	5	BAG/<4°C	1	x					
64	BH7	1.00	12.07.22	s	BAG/<4°C	1	x					
A	BH7	1.25	12.07.22	s	BAG/<4 ⁰ C	1	x					
66	BH7	1.50	12.07.22	s	BAG/<4 ⁰ C	1	x					
67	ВН7	1.75	12.07.22	S	BAG/<4 ⁰ C	1	x					
					TOTAL	8						

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide/Cd Preserved Plastic; AG = Amber Glass: Unpreserved; AP - Aitfreight Unpreserved Plastic; F = Formaldehyde Preserved Vial SG = Suffuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Plastic; SP = Suffuric Preserved Plastic; F = Formaldehyde Preserved Glass; F = Formaldehyde Preserved Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Suffuric Preserved Plastic; F = Formaldehyde Preserved Glass; H = HCl preserved Plastic; HS = HCl preserved; HS = HCl preserve

Z = Zinc Acetate Preserved Bottle: E = EDTA Preserved Bottles: ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soits; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EB2220427	Page	: 1 of 15	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Br	risbane
Contact	: MR CHRIS BUTLER	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424	Address	: 2 Byth Street Stafford QLE	D Australia 4053
	ROBINA TOWN CENTRE QLD, AUSTRALIA 4230			
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 14-Jul-2022 11:35	ANUTUR A
Order number	: PE3394.22	Date Analysis Commenced	: 18-Jul-2022	
C-O-C number	:	Issue Date	: 20-Jul-2022 11:24	
Sampler	: CHRIS BUTLER, SEAN GARDINER			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 64			Accredited for compliance with
No. of samples analysed	: 64			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- SPLIT WORK ORDER: It should be noted that ALS has split this work order over the following work orders EB2220520 and EB2220427 due to the size of the sample numbers. For any further information regarding this processing of samples please contact ALS client services division on ALSEnviro.Brisbane@alsglobal.com
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): ANC not required because pH KCl less than 6.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH1	BH1	BH1	BH1	BH1
(Matrix: SOIL)				0.0	0.25	0.50	0.75	1.00
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-001	EB2220427-002	EB2220427-003	EB2220427-004	EB2220427-005
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
рН КСІ (23А)		0.1	pH Unit	5.1		5.8		5.7
Titratable Actual Acidity (23F)		2	mole H+ / t	31		4		4
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.05		<0.02		<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.019		0.014		0.014
acidity - Chromium Reducible Sulfur		10	mole H+ / t	12		<10		<10
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5		1.5		1.5
Net Acidity (sulfur units)		0.02	% S	0.07		0.02		0.02
Net Acidity (acidity units)		10	mole H+ / t	43		13		13
Liming Rate		1	kg CaCO3/t	3		<1		<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.07		0.02		0.02
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	43		13		13
Liming Rate excluding ANC		1	kg CaCO3/t	3		<1		<1
EA037: Ass Field Screening Analysis								
ØpH (F)		0.1	pH Unit	5.9	6.1	6.0	6.3	6.1
ø pH (Fox)		0.1	pH Unit	2.9	3.1	4.9	5.4	4.8
Ø Reaction Rate		1	-	2	2	1	1	1

Page : 4 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH1	BH1	BH1	BH1	BH1
(Matrix: SOIL)				1.25	1.50	1.75	2.00	2.25
	Sampling date / time			12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-006	EB2220427-007	EB2220427-008	EB2220427-009	EB2220427-010
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		5.4			
Titratable Actual Acidity (23F)		2	mole H+ / t		6			
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02			
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.197			
acidity - Chromium Reducible Sulfur		10	mole H+ / t		123			
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5			
Net Acidity (sulfur units)		0.02	% S		0.21			
Net Acidity (acidity units)		10	mole H+ / t		129			
Liming Rate		1	kg CaCO3/t		10			
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.21			
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		129			
Liming Rate excluding ANC		1	kg CaCO3/t		10			
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.9	6.1	6.0	6.3	6.3
ø pH (Fox)		0.1	pH Unit	4.5	1.8	1.8	1.8	2.3
Ø Reaction Rate		1	-	1	4	4	4	4

Page : 5 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 2.50	BH1 2.75	BH2 0.0	BH2 0.25	BH2 0.50
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-011	EB2220427-012	EB2220427-013	EB2220427-014	EB2220427-015
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	5.6				
Titratable Actual Acidity (23F)		2	mole H+ / t	4				
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.194				
acidity - Chromium Reducible Sulfur		10	mole H+ / t	121				
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5				
Net Acidity (sulfur units)		0.02	% S	0.20				
Net Acidity (acidity units)		10	mole H+ / t	125				
Liming Rate		1	kg CaCO3/t	9				
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.20				
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	125				
Liming Rate excluding ANC		1	kg CaCO3/t	9				
EA037: Ass Field Screening Analysis								
øpH (F)		0.1	pH Unit	7.4	7.7	6.6	6.6	6.6
ø pH (Fox)		0.1	pH Unit	2.0	3.7	3.3	3.8	5.1
Ø Reaction Rate		1	-	4	2	3	2	1

Page : 6 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH2 0.75	BH2 1.00	BH2 1.25	BH2 1.50	BH2 1.75
	Sampli	ng date / time	12-Jul-2022 00:00					
Compound	CAS Number	LOR	Unit	EB2220427-016	EB2220427-017	EB2220427-018	EB2220427-019	EB2220427-020
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	6.3	6.4	6.3	6.1	6.3
ø pH (Fox)		0.1	pH Unit	4.9	4.3	2.1	1.8	2.1
Ø Reaction Rate		1	-	1	2	4	4	4

Page : 7 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	ВН3 0.0	BH3 0.25	BH3 0.50	BH3 0.75	BH3 1.00
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-021	EB2220427-022	EB2220427-023	EB2220427-024	EB2220427-025
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
øpH (F)		0.1	pH Unit	6.1	6.2	6.4	6.4	6.3
ø pH (Fox)		0.1	pH Unit	2.8	3.6	4.6	5.0	4.2
Ø Reaction Rate		1	-	3	2	2	1	2

Page : 8 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH3	BH3	BH3	BH4	BH4
(Matrix: SOIL)				1.25	1.50	1.75	0.0	0.25
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-026	EB2220427-027	EB2220427-028	EB2220427-029	EB2220427-030
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit				5.4	
Titratable Actual Acidity (23F)		2	mole H+ / t				17	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S				0.03	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S				0.039	
acidity - Chromium Reducible Sulfur		10	mole H+ / t				24	
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-				1.5	
Net Acidity (sulfur units)		0.02	% S				0.07	
Net Acidity (acidity units)		10	mole H+ / t				41	
Liming Rate		1	kg CaCO3/t				3	
Net Acidity excluding ANC (sulfur units)		0.02	% S				0.07	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t				41	
Liming Rate excluding ANC		1	kg CaCO3/t				3	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	6.3	6.4	7.1	6.6	6.8
ø pH (Fox)		0.1	pH Unit	1.8	1.8	1.8	2.7	3.2
Ø Reaction Rate		1	-	4	4	4	3	3

Page : 9 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH4	BH4	BH4	BH4	BH4
(Matrix: SOIL)				0.50	1.00	1.25	1.50	1.75
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-031	EB2220427-033	EB2220427-034	EB2220427-035	EB2220427-036
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	5.8	5.9		5.7	
Titratable Actual Acidity (23F)		2	mole H+ / t	9	2		3	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02		<0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.027	0.223		0.187	
acidity - Chromium Reducible Sulfur		10	mole H+ / t	17	139		116	
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5		1.5	
Net Acidity (sulfur units)		0.02	% S	0.04	0.23		0.19	
Net Acidity (acidity units)		10	mole H+ / t	26	142		120	
Liming Rate		1	kg CaCO3/t	2	11		9	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.04	0.23		0.19	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	26	142		120	
Liming Rate excluding ANC		1	kg CaCO3/t	2	11		9	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.2	7.2	7.2	7.0	6.9
ø pH (Fox)		0.1	pH Unit	4.1	1.4	1.6	2.0	1.6
Ø Reaction Rate		1	-	2	4	4	4	4

Page : 10 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH4	BH4	BH5	BH5	BH5
(Matrix: SOIL)				2.00	2.25	0.0	0.50	0.75
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-037	EB2220427-038	EB2220427-039	EB2220427-040	EB2220427-041
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		6.0			
Titratable Actual Acidity (23F)		2	mole H+ / t		<2			
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02			
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.151			
acidity - Chromium Reducible Sulfur		10	mole H+/t		94			
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5			
Net Acidity (sulfur units)		0.02	% S		0.15			
Net Acidity (acidity units)		10	mole H+ / t		94			
Liming Rate		1	kg CaCO3/t		7			
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.15			
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		94			
Liming Rate excluding ANC		1	kg CaCO3/t		7			
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	6.8	7.4	6.5	6.7	6.4
ø pH (Fox)		0.1	pH Unit	1.9	1.9	4.6	5.3	5.3
Ø Reaction Rate		1	-	4	4	3	1	1

Page : 11 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH5	BH5	BH5	BH5	BH6
(Matrix: SOIL)				1.00	1.25	1.50	1.75	0.0
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-042	EB2220427-043	EB2220427-044	EB2220427-045	EB2220427-048
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit					5.3
Titratable Actual Acidity (23F)		2	mole H+ / t					12
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S					<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S					0.022
acidity - Chromium Reducible Sulfur		10	mole H+ / t					14
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-					1.5
Net Acidity (sulfur units)		0.02	% S					0.04
Net Acidity (acidity units)		10	mole H+ / t					26
Liming Rate		1	kg CaCO3/t					2
Net Acidity excluding ANC (sulfur units)		0.02	% S					0.04
Net Acidity excluding ANC (acidity units)		10	mole H+ / t					26
Liming Rate excluding ANC		1	kg CaCO3/t					2
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.6	5.1	5.0	5.4	5.6
ø pH (Fox)		0.1	pH Unit	3.3	1.8	2.0	1.8	2.9
Ø Reaction Rate		1	-	2	4	4	4	3

Page : 12 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH6	BH6	BH6	BH6	BH6
(Matrix: SOIL)				0.25	0.50	0.75	1.00	1.25
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-049	EB2220427-050	EB2220427-051	EB2220427-052	EB2220427-053
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		4.7		5.2	
Titratable Actual Acidity (23F)		2	mole H+ / t		45		15	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		0.07		0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.027		0.020	
acidity - Chromium Reducible Sulfur		10	mole H+ / t		16		12	
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5		1.5	
Net Acidity (sulfur units)		0.02	% S		0.10		0.04	
Net Acidity (acidity units)		10	mole H+ / t		61		27	
Liming Rate		1	kg CaCO3/t		5		2	
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.10		0.04	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		61		27	
Liming Rate excluding ANC		1	kg CaCO3/t		5		2	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.7	5.6	5.8	6.1	5.7
ø pH (Fox)		0.1	pH Unit	2.6	2.5	3.1	4.1	3.0
Ø Reaction Rate		1	-	3	3	3	2	2

Page : 13 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH6	BH6	BH6	BH6	BH6
(Matrix: SOIL)				1.50	1.75	2.00	2.25	2.50
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2220427-054	EB2220427-055	EB2220427-056	EB2220427-057	EB2220427-058
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	5.3				5.4
Titratable Actual Acidity (23F)		2	mole H+ / t	10				8
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.141				0.161
acidity - Chromium Reducible Sulfur		10	mole H+/t	88				100
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5				1.5
Net Acidity (sulfur units)		0.02	% S	0.16				0.17
Net Acidity (acidity units)		10	mole H+ / t	97				108
Liming Rate		1	kg CaCO3/t	7				8
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.16				0.17
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	97				108
Liming Rate excluding ANC		1	kg CaCO3/t	7				8
EA037: Ass Field Screening Analysis								
ØpH (F)		0.1	pH Unit	6.0	6.2	6.3	6.3	6.2
ø pH (Fox)		0.1	pH Unit	1.9	1.8	2.0	2.0	2.1
Ø Reaction Rate		1	-	4	4	4	4	4

Page : 14 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 2.75	BH7 0.0	BH7 0.25	BH7 0.50	BH7 0.75
	Sampling date / time					12-Jul-2022 00:00	12-Jul-2022 00:00	12-Jul-2022 00:00
Compound	CAS Number	LOR	Unit	EB2220427-059	EB2220427-060	EB2220427-061	EB2220427-062	EB2220427-063
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.6	5.4	5.8	5.4	6.0
ø pH (Fox)		0.1	pH Unit	1.8	3.5	3.8	4.7	4.6
Ø Reaction Rate		1	-	4	3	2	2	2

Page : 15 of 15 Work Order : EB2220427 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH7 1.00	BH7 1.25	BH7 1.50	BH7 1.75	
Sampling date / time				12-Jul-2022 00:00	12-Jul-2022 00:00	12-Jul-2022 00:00	12-Jul-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2220427-064	EB2220427-065	EB2220427-066	EB2220427-067	
				Result	Result	Result	Result	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	5.5	5.6	5.9	6.0	
øpH (Fox)		0.1	pH Unit	2.1	1.7	1.8	1.6	
ø Reaction Rate		1	-	4	4	4	4	

QUALITY CONTROL REPORT

Work Order	: EB2220427	Page	: 1 of 4	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division E	Brisbane
Contact	: MR CHRIS BUTLER	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230	Address	: 2 Byth Street Stafford QL	D Australia 4053
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 14-Jul-2022	
Order number	: PE3394.22	Date Analysis Commenced	: 18-Jul-2022	
C-O-C number	:	Issue Date	: 20-Jul-2022	
Sampler	: CHRIS BUTLER, SEAN GARDINER			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 64			Accredited for compliance with
No. of samples analysed	: 64			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris

Senior Acid Sulfate Soil Chemist

Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA033-A: Actual Ac	idity (QC Lot: 446520)8)							
EB2220272-010	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	14	12	17.2	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	5.2	5.2	0.0	0% - 20%
EB2220427-033	BH4 1.00	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	2	2	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	5.9	5.9	0.0	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 446	5208)							
EB2220272-010 Anonymous	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.136	0.134	1.4	0% - 20%
		EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	85	84	1.4	No Limit
EB2220427-033	BH4 1.00	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.223	0.210	6.2	0% - 20%
		EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	139	131	6.2	0% - 50%
EA037: Ass Field S	creening Analysis (C	QC Lot: 4461683)							
EB2220427-001	BH1 0.0	EA037: pH (F)		0.1	pH Unit	5.9	6.0	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.9	2.9	0.0	0% - 20%
EB2220427-011	BH1 2.50	EA037: pH (F)		0.1	pH Unit	7.4	7.5	1.3	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.0	2.0	0.0	0% - 20%
EA037: Ass Field S	creening Analysis (C	QC Lot: 4461684)							
EB2220427-021	BH3 0.0	EA037: pH (F)		0.1	pH Unit	6.1	6.0	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.8	2.7	0.0	0% - 20%
EB2220427-031	BH4 0.50	EA037: pH (F)		0.1	pH Unit	7.2	7.1	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	4.1	4.2	0.0	0% - 20%

Page	: 3 of 4
Work Order	: EB2220427
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA037: Ass Field S	creening Analysis (QC Lot:	4461685)									
EB2220427-042	BH5 1.00	EA037: pH (F)		0.1	pH Unit	5.6	5.5	2.0	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	3.3	3.4	5.1	0% - 20%		
EB2220427-054	BH6 1.50	EA037: pH (F)		0.1	pH Unit	6.0	6.1	2.2	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	1.9	1.9	0.0	0% - 50%		
EA037: Ass Field S	creening Analysis (QC Lot:	4461686)									
EB2220427-064 BH7 1.00	BH7 1.00	EA037: pH (F)		0.1	pH Unit	5.5	5.6	0.0	0% - 20%		
		EA037: pH (Fox)		0.1	pH Unit	2.1	2.1	0.0	0% - 20%		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA033-A: Actual Acidity (QCLot: 4465208)									
EA033: pH KCI (23A)			pH Unit		4.4 pH Unit	102	91.0	107	
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	19 mole H+ / t	88.7	70.0	124	
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
EA033-B: Potential Acidity (QCLot: 4465208)									
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.246 % S	92.2	77.0	121	
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: EB2220427	Page	: 1 of 6
Client	PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR CHRIS BUTLER	Telephone	: +61-7-3243 7222
Project	: PE3394.22	Date Samples Received	: 14-Jul-2022
Site	:	Issue Date	: 20-Jul-2022
Sampler	: CHRIS BUTLER, SEAN GARDINER	No. of samples received	: 64
Order number	: PE3394.22	No. of samples analysed	: 64

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-A: Actual Acidity								
Snap Lock Bag - frozen (EA033)				10.1.1.0000			47 0 4 0000	
BH1 - 0.0,	BH1 - 0.50,	12-Jul-2022	19-Jul-2022	12-Jul-2023	~	19-Jul-2022	17-Oct-2022	 ✓
BH1 - 1.00,	BH1 - 1.50,							
BH1 - 2.50,	BH4 - 0.0,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.50,	BH4 - 2.25,							
BH6 - 0.0,	BH6 - 0.50,							
BH6 - 1.00,	BH6 - 1.50,							
BH6 - 2.50								
EA033-B: Potential Acidity								
Snap Lock Bag - frozen (EA033)								
BH1 - 0.0,	BH1 - 0.50,	12-Jul-2022	19-Jul-2022	12-Jul-2023	1	19-Jul-2022	17-Oct-2022	 ✓
BH1 - 1.00,	BH1 - 1.50,							
BH1 - 2.50,	BH4 - 0.0,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.50,	BH4 - 2.25,							
BH6 - 0.0,	BH6 - 0.50,							
BH6 - 1.00,	BH6 - 1.50,							
BH6 - 2.50								
EA033-C: Acid Neutralising Capacity								
Snap Lock Bag - frozen (EA033)								
BH1 - 0.0,	BH1 - 0.50,	12-Jul-2022	19-Jul-2022	12-Jul-2023	1	19-Jul-2022	17-Oct-2022	✓
BH1 - 1.00,	BH1 - 1.50,							
BH1 - 2.50,	BH4 - 0.0,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.50,	BH4 - 2.25,							
BH6 - 0.0,	BH6 - 0.50,							
BH6 - 1.00,	BH6 - 1.50,							
BH6 - 2.50								

Page	: 3 of 6
Work Order	: EB2220427
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; 🗸 = With	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-D: Retained Acidity								
Snap Lock Bag - frozen (EA033)								
BH1 - 0.0,	BH1 - 0.50,	12-Jul-2022	19-Jul-2022	12-Jul-2023	1	19-Jul-2022	17-Oct-2022	✓
BH1 - 1.00,	BH1 - 1.50,							
BH1 - 2.50,	BH4 - 0.0,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.50,	BH4 - 2.25,							
BH6 - 0.0,	BH6 - 0.50,							
BH6 - 1.00,	BH6 - 1.50,							
BH6 - 2.50								
EA033-E: Acid Base Accounting								
Snap Lock Bag - frozen (EA033)								
BH1 - 0.0,	BH1 - 0.50,	12-Jul-2022	19-Jul-2022	12-Jul-2023	1	19-Jul-2022	17-Oct-2022	 ✓
BH1 - 1.00,	BH1 - 1.50,							
BH1 - 2.50,	BH4 - 0.0,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.50,	BH4 - 2.25,							
BH6 - 0.0,	BH6 - 0.50,							
BH6 - 1.00,	BH6 - 1.50,							
BH6 - 2.50								

Page	: 4 of 6
Work Order	: EB2220427
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding tir
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA037: Ass Field Screening Analysis								
Snap Lock Bag - frozen (EA037)								
BH1 - 0.0,	BH1 - 0.25,	12-Jul-2022	18-Jul-2022	08-Jan-2023	1	18-Jul-2022	08-Jan-2023	✓
BH1 - 0.50,	BH1 - 0.75,							
BH1 - 1.00,	BH1 - 1.25,							
BH1 - 1.50,	BH1 - 1.75,							
BH1 - 2.00,	BH1 - 2.25,							
BH1 - 2.50,	BH1 - 2.75,							
BH2 - 0.0,	BH2 - 0.25,							
BH2 - 0.50,	BH2 - 0.75,							
BH2 - 1.00,	BH2 - 1.25,							
BH2 - 1.50,	BH2 - 1.75,							
BH3 - 0.0,	BH3 - 0.25,							
BH3 - 0.50,	BH3 - 0.75,							
BH3 - 1.00,	BH3 - 1.25,							
BH3 - 1.50,	BH3 - 1.75,							
BH4 - 0.0,	BH4 - 0.25,							
BH4 - 0.50,	BH4 - 1.00,							
BH4 - 1.25,	BH4 - 1.50,							
BH4 - 1.75,	BH4 - 2.00,							
BH4 - 2.25,	BH5 - 0.0,							
BH5 - 0.50,	BH5 - 0.75,							
BH5 - 1.00,	BH5 - 1.25,							
BH5 - 1.50,	BH5 - 1.75,							
BH6 - 0.0,	BH6 - 0.25,							
BH6 - 0.50,	BH6 - 0.75,							
BH6 - 1.00,	BH6 - 1.25,							
BH6 - 1.50,	BH6 - 1.75,							
BH6 - 2.00,	BH6 - 2.25,							
BH6 - 2.50,	BH6 - 2.75,							
BH7 - 0.0,	BH7 - 0.25,							
BH7 - 0.50,	BH7 - 0.75,							
BH7 - 1.00,	BH7 - 1.25,							
BH7 - 1.50,	BH7 - 1.75							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	not within specification ; \checkmark = Quality Control frequency within specification.						
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected Evaluation		
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	7	64	10.94	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chromium Suite for Acid Sulphate Soils	EA033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chromium Suite for Acid Sulphate Soils	EA033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
ASS Field Screening Analysis	* EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines. As received samples are tested for pH field and pH fox and assessed for a reaction rating.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB2222068					
Client Contact Address	 PRECISE ENVIRONMENTAL PTY LTD RESULTS & INVOICE PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230 	Laboratory Contact Address	: Nidhi Bhim	ental Division Brisbane nani eet Stafford QLD Australia		
E-mail Telephone Facsimile	: mail@preciseenvironmental.com.au : +61 07 5593 7848 : +61 07 5593 7020	E-mail Telephone Facsimile	: nidhi.bhima : +61-7-3243 : +61-7-3243			
Project Order number C-O-C number Site Sampler	: PE3394.22 : PE3394.22 : : : CHRIS BUTLER, SEAN GARDINER	Page Quote number QC Level		REENV0003 (BN/031/16 V5) 3 B3 & ALS QC Standard		
Dates Date Samples Recei Client Requested Du Date		Issue Date Scheduled Reporting	g Date	: 28-Jul-2022 : 04-Aug-2022		
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	: Samples On Hand	Security Seal Temperature No. of samples rece	ived / analysed	: Not Available : : 18 / 18		

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This work order was created to rebatch samples from EB2220427 and EB2220520.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Soils

m Suite for Acid Sulphate

A033

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Laboratory sample ID	Sampling date / time	Sample ID	SOIL - E/ Chromiur
EB2222068-001	12-Jul-2022 00:00	BH2 0.0	✓
EB2222068-002	12-Jul-2022 00:00	BH3 0.0	✓
EB2222068-003	12-Jul-2022 00:00	BH7 0.0	✓
EB2222068-004	12-Jul-2022 00:00	BH8 0.0	✓
EB2222068-005	12-Jul-2022 00:00	BH8 0.25	✓
EB2222068-006	12-Jul-2022 00:00	BH8 0.50	✓
EB2222068-007	12-Jul-2022 00:00	BH9 0.0	✓
EB2222068-008	12-Jul-2022 00:00	BH9 0.50	✓
EB2222068-009	12-Jul-2022 00:00	BH9 1.00	✓
EB2222068-010	12-Jul-2022 00:00	BH9 1.50	✓
EB2222068-011	12-Jul-2022 00:00	BH10 0.0	✓
EB2222068-012	12-Jul-2022 00:00	BH11 0.75	✓
EB2222068-013	12-Jul-2022 00:00	BH12 0.0	✓
EB2222068-014	12-Jul-2022 00:00	BH13 0.0	✓
EB2222068-015	12-Jul-2022 00:00	BH14 0.0	✓
EB2222068-016	12-Jul-2022 00:00	BH14 0.50	✓
EB2222068-017	12-Jul-2022 00:00	BH14 1.00	✓
EB2222068-018	12-Jul-2022 00:00	BH14 1.50	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

RESULTS & INVOICE

 *AU Certificate of Analysis - NATA (COA) 	Email	mail@preciseenvironmental.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mail@preciseenvironmental.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mail@preciseenvironmental.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mail@preciseenvironmental.com.au
- A4 - AU Tax Invoice (INV)	Email	mail@preciseenvironmental.com.au
- Chain of Custody (CoC) (COC)	Email	mail@preciseenvironmental.com.au
- EDI Format - XTab (XTAB)	Email	mail@preciseenvironmental.com.au

	ALS Laboratory: please tick 🗲	CHAIN OF CUSTODY ALS Laboratory: please tick →	□ Sydney. 277 Woodpa Ph: 02 8784 8555 E:sam □ Newcastle: 5 Rosegu Ph:02 4968 9433 E:sam	iples,sydney@a im Rd, Warabri	alsenviro.com Ph:07 3243 722 ook NSW 2304	12 Shand St, Stafford OLD 405 2 Eisamples.brisbane@alsenv : 14-15 Desma Ct. Bohle QLD 0 Ei townsville.environmental@als	iro.com Ph: 4818 🛛	:03 8549 9 Adelaide	rne: 2-4 Westall Rd, Springvale 9600 E. samples.melbourne@ le: 2-1 Burma Rd, Pooraka SA 9 0890 E.adelaide@alsenviro.c	ilsenvíro.com 5095	Perl Ph: 08 Lau Ph: 03		2222068
	PRECISE ENVIRONMENTAL				UND REQUIREMENTS : T may be longer for some tests	Standard TAT (Lis					H- Mark		
<u>8</u>	7/14 FREMANTLE ST, BURLEIGH I PE3394.22	HEADS 4220		e.g., Ultra Tra	ace Organics)	Non Standard or u	rgent TAT (List	due dat	COC SEQUENCE NUM	BER (Circle)			
UNBER;	PE3394.22			ALS QUU	1E NO,: B	1051110 14		co	DC: 1 2 3 4		*		, 20, 19, 19, 1, 10, 1, 10, 10, 11, 11, 11, 11, 11,
<u></u>	: CHRIS BUTLER		CONTACT: 0	431 565 210					F: 1 2 3 4		7	?elephone : +	61-7-3243 7222
	CHRIS BUTLER / SEAN GARDINER	र	SAMPLER M	OBILE: 040	9 827 396	RELINQUISHED BY:		RE	ECEIVED BY:		RELIN		1
it of ALS?	YES / NO)		EDD FORMA	T (or defau	It):	CHRIS BUTLER							
orts to: mai	il@preciseenvironmental.com.au	- ·					D_ But	Les, DA	TE/TIME:		DATE/TIME:		DATE/TIME:
c et o: PO Bo	ox 4424, Robina Town Centre 4230					25.07.22 3pm							
SPECIAL	L HANDLING/STORAGE OR DISPOSA	AL:											
). Orly	SAMPLE DETAILS	Water(W)	MATRI	<: Solid(S)	CONTAINER INF	ORMATION			IRED including SUITES				Additional Information
Ar ID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		EA037 (pHF and pHFOX)	EA033 (Chromium suite)					Comments on likely contaminant law dilutions, or samples requiring specifi analysis etc.
1	BH2	0.0	12.07.22	s	BAG/<4°C	1		x					_
2	ВН3	0.0	12.07.22	5	BAG/<4°C	1		x					
3	8H7	0.0	12.07.22	s	BAG/<4°C	1		x					
Ý	BH8	0.0	12.07.22	s	BAG/<4°C	1		х					
5	BH8	0,25	12.07.22	s	BAG/<4 ⁰ C	1		х					
6	EH8	0,50	12.07.22	s	BAG/<4°C	1		x					
2	вня	0.0	12,07,22	s	BAG/<4 ⁰ C	1		x					
Y	вня	0.50	12.07,22	s	BAG/<4°C	1		x					
		1.00	12.07.22	s	BAG/<4 ⁰ C	1		х					
9	BH9					1							
9 1,0	BH9	1.50	12.07.22	s	BAG/<4°C	1		х					

				·										
		Y CHAIN OF CUSTODY ALS Laboratory: please tick →	□ Sydney: 277 Woodp Ph: 02 8784 8555 E:sar □ Newcastie: 5 Roseg Ph:02 4968 9433 E san	npies.sydney@ jum Rd, Warab npies.newcastle	alsenviro.com Ph:07 3243 7222 rook NSW 2304 Townsville: @alsenviro.com Ph:07 4796 0600	2 Shand St, Stafford QLD 2 E:samples.brisbane@al 14-15 Desma Ct, Bohle 1 D E: tovnsville.environmental	senviro.com QLD 4818 @alsenviro.com	Ph:03 854 D Adelai Ph: 08 83	9600 E: sample de: 2-1 Burma R	ll Rd, Springvale VI ss.melbourne@alsr Id, Pooraka SA 509 de@alsenviro.com	envira.com 95	□ Perth: 10 Hod W Ph: 08 9209 7655 E □ Launceston: 27 Ph: 03 6331 2158 (■ Caunceston: 27	E: samples.perth@a / Wellington St, Lau E: launceston@alse	ilsenviro.com nceston TAS 7250
					OUND REQUIREMENTS : AT may be longer for some tests	Standard TAT						TA BUR LEADER	ulter al ol consideration	
:E: 話	7/14 FREMANTLE ST, BURLEIGH	1 HEADS 4220		e.g., Ultra Tr	race Organics)	Non Standard	or urgent TAT (L	List due d				Construction (Construction)	u naon zinning o chuid	
ECT:	PE3394.22			ALS QUO	ITE NO.: BN	1031/16 v4				UENCE NUMBE				
R NUBBER:	PE3394.22											7 Caugae an	a entrance debuter signs	
	CHRIS BUTLER		CONTACT:				<u> </u>					7	attern wie Orwenia in o	
LER	CHRIS BUTLER / SEAN GARDINE	1K	SAMPLER N			RELINQUISHED B	r:	R	ECEIVED BY	:		RELINQUISHED	ы т:	RECEIVED BY:
emailed to ALS?			EDD FORM/	Al (or defau	1R):		<u>~</u> -							
	l@preciseenvironmental.com.au					DATE/TIME:	OL B	utter D	ATE/TIME:			DATE/TIME:		DATE/TIME:
nvoice to: PO Bo	ox 4424, Robina Town Centre 4230					25.07.22 3pm								
IENT SPECIAL	HANDLING/STORAGE OR DISPOS	AL:												
SUS ONLYS	SAMPLE DETAILS	Water(W)	MATRI	IX: Solid(S)		ORMATION						es must be listed to a Dissolved (field filtered l		Additional Inform
Contraction of the second				×		TES	pHFOX)	suite)						Comments on likely contamin diktions, or samples requiring analysis etc.
LAPID	SAMPLE ID	SAMPLE DESCRIPTION	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below	% and a set of the se	EA037 (pHF and pl	EA033 (Chromium						
	SAMPLE ID BH10	SAMPLE DESCRIPTION	DATE / TIME	¢ MATRI	TYPE & PRESERVAT (refer to codes below BAG/<4°C	₩ ₩ 101AL BOTT 1	(pHF and	Chromiu						
					(refer to codes below	3 TOTAL	(pHF and	EA033 (Chromiu						
	BH10	0.0	12.07.22	S	(refer to codes below BAG/<4°C	TOTAL	(pHF and	× EA033 (Chromiu						
	BH10 BH11	0.0	12.07.22 12.07.22	s	(refer to codes below BAG/<4 ^o C BAG/<4 ^o C	1 1 1 1 1	(pHF and	x × EA033 (Chromiu						
	BH10 BH11 BH12	0.0 0.75 0.0	12.07.22 12.07.22 12.07.22	s s s	(refer to codes below BAG/<4 ^o C BAG/<4 ^o C BAG/<4 ^o C	1 1 107AL	(pHF and	x x EA033 (Chromiu						
() () () () () () ()	BH10 BH11 BH12 BH13	0.0 0.75 0.0 0.0	12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22	S S S S	(refer to codes below BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C	1 1 1 1 1 1 1 1 1	(pHF and	x x EA033 (Chromiu						
() () () () () ()	BH10 BH11 BH12 BH13 BH14	0.0 0.75 0.0 0.0 0.0	12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22	S S S S S S S S S S	(refer to codes below BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C	7 1014F	(pHF and	x x x x x x x x x x x x x x x x x x x						
() () () () () () ()	BH10 BH11 BH12 BH13 BH14 BH14	0.0 0.75 0.0 0.0 0.0 0.0 0.50	12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22 12.07.22	S S S S S S S S S	(refer to codes below BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C BAG/<4°C	1 1 1 1 1 1 1 1 1	(pHF and	x x EA033 (Chromiu						

`

CERTIFICATE OF ANALYSIS

Work Order	: EB2222068	Page	: 1 of 6	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Br	risbane
Contact	: RESULTS & INVOICE	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	ROBINA TOWN CENTRE QLD, AUSTRALIA 4230			
Telephone	: +61 07 5593 7848	Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 25-Jul-2022 15:29	SWIIII.
Order number	: PE3394.22	Date Analysis Commenced	: 03-Aug-2022	
C-O-C number	:	Issue Date	: 03-Aug-2022 15:26	
Sampler	: CHRIS BUTLER, SEAN GARDINER		5	Hac-MRA NATA
Site	·			
Quote number	: BN/031/16 V5			
No. of samples received	: 18			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 18			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): ANC not required because pH KCl less than 6.5
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Page : 3 of 6 Work Order : EB2222068 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH2	BH3	BH7	BH8	BH8
(Matrix: SOIL)				0.0	0.0	0.0	0.0	0.25
		Sampli	ng date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2222068-001	EB2222068-002	EB2222068-003	EB2222068-004	EB2222068-005
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
рН КСІ (23А)		0.1	pH Unit	4.9	4.5	4.6	4.8	4.7
Titratable Actual Acidity (23F)		2	mole H+ / t	66	128	106	40	44
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.10	0.20	0.17	0.06	0.07
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.013	0.016	0.018	0.014	0.018
acidity - Chromium Reducible Sulfur		10	mole H+ / t	<10	10	11	<10	11
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	0.12	0.22	0.19	0.08	0.09
Net Acidity (acidity units)		10	mole H+ / t	74	138	117	49	55
Liming Rate		1	kg CaCO3/t	6	10	9	4	4
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.12	0.22	0.19	0.08	0.09
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	74	138	117	49	55
Liming Rate excluding ANC		1	kg CaCO3/t	6	10	9	4	4

Page : 4 of 6 Work Order : EB2222068 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH8	BH9	BH9	BH9	BH9
(Matrix: SOIL)				0.50	0.0	0.50	1.00	1.50
		Sampli	ing date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2222068-006	EB2222068-007	EB2222068-008	EB2222068-009	EB2222068-010
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
рН КСІ (23А)		0.1	pH Unit	5.8	4.6	5.8	5.6	5.2
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	79	<2	3	7
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	0.13	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.019	0.030	0.015	0.037	0.124
acidity - Chromium Reducible Sulfur		10	mole H+ / t	12	18	<10	23	77
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	<0.02	0.16	<0.02	0.04	0.14
Net Acidity (acidity units)		10	mole H+ / t	12	98	<10	26	84
Liming Rate		1	kg CaCO3/t	<1	7	<1	2	6
Net Acidity excluding ANC (sulfur units)		0.02	% S	<0.02	0.16	<0.02	0.04	0.14
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	12	98	<10	26	84
Liming Rate excluding ANC		1	kg CaCO3/t	<1	7	<1	2	6

Page : 5 of 6 Work Order : EB2222068 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL			Sample ID	BH10	BH11	BH12	BH13	BH14
(Matrix: SOIL)				0.0	0.75	0.0	0.0	0.0
		Sampli	ing date / time	12-Jul-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2222068-011	EB2222068-012	EB2222068-013	EB2222068-014	EB2222068-015
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	4.8	4.8	4.6	4.6	4.5
Titratable Actual Acidity (23F)		2	mole H+/t	42	49	66	87	124
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.07	0.08	0.11	0.14	0.20
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.023	0.012	0.012	0.015	0.024
acidity - Chromium Reducible Sulfur		10	mole H+/t	14	<10	<10	<10	15
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	0.09	0.09	0.12	0.15	0.22
Net Acidity (acidity units)		10	mole H+ / t	56	57	74	96	138
Liming Rate		1	kg CaCO3/t	4	4	6	7	10
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.09	0.09	0.12	0.15	0.22
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	56	57	74	96	138
Liming Rate excluding ANC		1	kg CaCO3/t	4	4	6	7	10

Page : 6 of 6 Work Order : EB2222068 Client : PRECISE ENVIRONMENTAL PTY LTD Project : PE3394.22

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH14	BH14	BH14	
				0.50	1.00	1.50	
		Sampli	ng date / time	12-Jul-2022 00:00	12-Jul-2022 00:00	12-Jul-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2222068-016	EB2222068-017	EB2222068-018	
				Result	Result	Result	
EA033-A: Actual Acidity							
pH KCI (23A)		0.1	pH Unit	5.6	5.3	5.0	
Titratable Actual Acidity (23F)		2	mole H+ / t	4	7	11	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)		0.005	% S	0.015	0.108	0.094	
acidity - Chromium Reducible Sulfur		10	mole H+ / t	<10	67	58	
(a-22B)							
EA033-E: Acid Base Accounting							
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	
Net Acidity (sulfur units)		0.02	% S	0.02	0.12	0.11	
Net Acidity (acidity units)		10	mole H+ / t	13	74	69	
Liming Rate		1	kg CaCO3/t	<1	6	5	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.02	0.12	0.11	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	13	74	69	
Liming Rate excluding ANC		1	kg CaCO3/t	<1	6	5	

QUALITY CONTROL REPORT

Work Order	: EB2222068	Page	: 1 of 4	
Client	: PRECISE ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division	Brisbane
Contact	: RESULTS & INVOICE	Contact	: Nidhi Bhimani	
Address	: PO BOX 4424 ROBINA TOWN CENTRE QLD, AUSTRALIA 4230	Address	: 2 Byth Street Stafford G	QLD Australia 4053
Telephone	: +61 07 5593 7848	Telephone	: +61-7-3243 7222	
Project	: PE3394.22	Date Samples Received	: 25-Jul-2022	SWIIII
Order number	: PE3394.22	Date Analysis Commenced	: 03-Aug-2022	
C-O-C number	:	Issue Date	: 03-Aug-2022	
Sampler	: CHRIS BUTLER, SEAN GARDINER			Hac-MRA NATA
Site	:			
Quote number	: BN/031/16 V5			Accreditation No. 825
No. of samples received	: 18			Accredited for compliance with
No. of samples analysed	: 18			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris

Senior Acid Sulfate Soil Chemist

Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA033-A: Actual Ac	idity (QC Lot: 4494355)								
EB2221902-001	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.08	0.08	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	48	47	0.0	0% - 20%
		EA033: pH KCI (23A)		0.1	pH Unit	4.5	4.5	0.0	0% - 20%
EB2222060-005	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.03	0.03	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	19	18	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	4.9	4.9	0.0	0% - 20%
EA033-A: Actual Ac	idity (QC Lot: 4494356)								
EB2222068-010	BH9 1.50	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	7	7	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	5.2	5.2	0.0	0% - 20%
EB2222247-002	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	7.0	7.0	0.0	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 449435	5)							
EB2221902-001	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.033	0.030	7.8	No Limit
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	20	19	7.8	No Limit
		(a-22B)							
EB2222060-005	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.025	0.024	0.0	No Limit
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	15	15	0.0	No Limit
		(a-22B)							
EA033-B: Potential	Acidity (QC Lot: 4494356	5)							
EB2222068-010	BH9 1.50	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.124	0.126	1.3	0% - 20%
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	77	78	0.0	No Limit
		(a-22B)							

Page	: 3 of 4
Work Order	: EB2222068
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

ub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EA033-B: Potential Acidity (QC Lot: 4494356) - continued										
EB2222247-002	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.025	0.024	0.0	No Limit	
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	16	15	0.0	No Limit	
		(a-22B)								

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA033-A: Actual Acidity (QCLot: 4494355)									
EA033: pH KCI (23A)			pH Unit		4.4 pH Unit	99.2	91.0	107	
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	16 mole H+ / t	102	70.0	124	
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
EA033-A: Actual Acidity (QCLot: 4494356)									
EA033: pH KCI (23A)			pH Unit		4.4 pH Unit	99.2	91.0	107	
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	16 mole H+ / t	98.4	70.0	124	
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
EA033-B: Potential Acidity (QCLot: 4494355)									
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.246 % S	92.4	77.0	121	
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					
EA033-B: Potential Acidity (QCLot: 4494356)									
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.246 % S	88.7	77.0	121	
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order	EB2222068	Page	÷ 1 of 5
Client		Laboratory	: Environmental Division Brisbane
Contact	: RESULTS & INVOICE	Telephone	: +61-7-3243 7222
Project	: PE3394.22	Date Samples Received	: 25-Jul-2022
Site	:	Issue Date	: 03-Aug-2022
Sampler	: CHRIS BUTLER, SEAN GARDINER	No. of samples received	: 18
Order number	: PE3394.22	No. of samples analysed	: 18

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; 🗸 = Withi	n holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-A: Actual Acidity								
80* dried soil (EA033)								
BH2 - 0.0,	BH3 - 0.0,	12-Jul-2022	03-Aug-2022	12-Jul-2023	1	03-Aug-2022	01-Nov-2022	✓
BH7 - 0.0,	BH8 - 0.0,							
BH8 - 0.25,	BH8 - 0.50,							
BH9 - 0.0,	BH9 - 0.50,							
BH9 - 1.00,	BH9 - 1.50,							
BH10 - 0.0,	BH11 - 0.75,							
BH12 - 0.0,	BH13 - 0.0,							
BH14 - 0.0,	BH14 - 0.50,							
BH14 - 1.00,	BH14 - 1.50							
EA033-B: Potential Acidity								
80* dried soil (EA033)								
BH2 - 0.0,	BH3 - 0.0,	12-Jul-2022	03-Aug-2022	12-Jul-2023	1	03-Aug-2022	01-Nov-2022	✓
BH7 - 0.0,	BH8 - 0.0,							
BH8 - 0.25,	BH8 - 0.50,							
BH9 - 0.0,	BH9 - 0.50,							
BH9 - 1.00,	BH9 - 1.50,							
BH10 - 0.0,	BH11 - 0.75,							
BH12 - 0.0,	BH13 - 0.0,							
BH14 - 0.0,	BH14 - 0.50,							
BH14 - 1.00,	BH14 - 1.50							

Page	: 3 of 5
Work Order	: EB2222068
Client	: PRECISE ENVIRONMENTAL PTY LTD
Project	: PE3394.22

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = With	in holding tin
Method		Sample Date	E	xtraction / Preparation	-	Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-C: Acid Neutralising Capacity								
80* dried soil (EA033)								
BH2 - 0.0,	BH3 - 0.0,	12-Jul-2022	03-Aug-2022	12-Jul-2023	1	03-Aug-2022	01-Nov-2022	 ✓
BH7 - 0.0,	BH8 - 0.0,							
BH8 - 0.25,	BH8 - 0.50,							
BH9 - 0.0,	BH9 - 0.50,							
BH9 - 1.00,	BH9 - 1.50,							
BH10 - 0.0,	BH11 - 0.75,							
BH12 - 0.0,	BH13 - 0.0,							
BH14 - 0.0,	BH14 - 0.50,							
BH14 - 1.00,	BH14 - 1.50							
EA033-D: Retained Acidity								
80* dried soil (EA033)								
BH2 - 0.0,	BH3 - 0.0,	12-Jul-2022	03-Aug-2022	12-Jul-2023	1	03-Aug-2022	01-Nov-2022	✓
BH7 - 0.0,	BH8 - 0.0,							
BH8 - 0.25,	BH8 - 0.50,							
BH9 - 0.0,	BH9 - 0.50,							
BH9 - 1.00,	BH9 - 1.50,							
BH10 - 0.0,	BH11 - 0.75,							
BH12 - 0.0,	BH13 - 0.0,							
BH14 - 0.0,	BH14 - 0.50,							
BH14 - 1.00,	BH14 - 1.50							
EA033-E: Acid Base Accounting								
80* dried soil (EA033)								
BH2 - 0.0,	BH3 - 0.0,	12-Jul-2022	03-Aug-2022	12-Jul-2023	1	03-Aug-2022	01-Nov-2022	✓
BH7 - 0.0,	BH8 - 0.0,							
BH8 - 0.25,	BH8 - 0.50,							
BH9 - 0.0,	BH9 - 0.50,							
BH9 - 1.00,	BH9 - 1.50,							
BH10 - 0.0,	BH11 - 0.75,							
BH12 - 0.0,	BH13 - 0.0,							
BH14 - 0.0,	BH14 - 0.50,							
BH14 - 1.00,	BH14 - 1.50							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification							
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Chromium Suite for Acid Sulphate Soils	EA033	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Chromium Suite for Acid Sulphate Soils	EA033	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Chromium Suite for Acid Sulphate Soils	EA033	2	32	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
Preparation Methods	Method	Matrix	Method Descriptions
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house

APPENDIX G – CROSS SECTION SCHEMATICS

E

Figure 1. Schematic cross-section of a treatment pad, including a compacted clay layer, guard layer, leachate collection system and containment with bunding (Source: Soil Management Guidelines, DNRM, 2002).

Figure 2. Cross-section of typical catch drain (Source: IE Aust, 1996).

Figure 3. Cross-section of typical sediment fence (Source: IE Aust, 1996).

APPENDIX H – NSW WASTE CLASSIFICATION GUIDELINES

Waste classification guidelines Part 4: Acid sulfate soils

www.epa.nsw.gov.au

© State of NSW, Environment Protection Authority.

The Environment Protection Authority (EPA) and the State of NSW are pleased to allow this material to be reproduced, for educational or non-commercial use, in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of images.

Disclaimer:

The EPA has compiled this document in good faith, exercising all due care and attention. The EPA does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. The EPA shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice about the suitability of the information to their needs.

Published by:

NSW Environment Protection Authority (EPA) 59–61 Goulburn Street, Sydney PO Box A290 Sydney South NSW 1232

Report pollution and environmental incidents

Environment Line: 131 555 (NSW only) or <u>info@environment.nsw.gov.au</u> See also www.epa.nsw.gov.au/pollution

Phone: +61 2 9995 5000 (switchboard) Phone: 131 555 (NSW only – environment information and publication requests) Fax: +61 2 9995 5999 TTY users: phone 133 677, then ask for 131 555 Speak and listen users: phone 1300 555 727, then ask for 131 555

Email: info@environment.nsw.gov.au Website: www.epa.nsw.gov.au

ISBN 978 1 74359 808 5 EPA 2014/0798

November 2014

Contents

Introduction	1
Using this part of the Guidelines	1
Potential acid sulfate soils	1
Handling potential acid sulfate soils prior to disposal	1
Disposal of potential acid sulfate soils below the water table	2
Disposal of potential acid sulfate soils above the water table	2
Actual acid sulfate soils	2
Treatment of actual acid sulfate soils prior to disposal	2
Disposal of actual acid sulfate soils	3

Classifying wastes into groups that pose similar risks to the environment and human health facilitates their management and appropriate disposal. It is the responsibility of those who generate waste to classify that waste. To assist waste generators classify the wastes they produce, the EPA has developed the *Waste Classification Guidelines* ('the Guidelines') which are a step-by-step process for classifying waste.

Generators and waste facilities must carefully follow the procedures in these Guidelines to ensure they comply with applicable laws in classifying their waste and safeguard protection of the environment and human health.

The Guidelines are comprised of the following sections, of which this document is Part 4:

Overview of the Guidelines

Part 1: Classifying waste

Part 2: Immobilisation of waste

Part 3: Waste containing radioactive material

Part 4: Acid sulfate soils

All sections of the Guidelines are available for download from the EPA website at <u>www.epa.nsw.gov.au/waste/classification.htm</u>.

Introduction

Acid sulfate soils (ASS) are those naturally occurring sediments and soils which contain sulfides, mainly iron sulfide and iron disulfide or their precursors. Exposure of these sulfides in the soil to oxygen – often as a result of drainage or excavation – can produce sulfuric acid, which may have a significant impact on the environment. Leaching of sulfuric acid into waterways can cause serious water quality problems, resulting in fish kills and damage to infrastructure, such as floodgates and bridges.

ASS are most commonly found in NSW along the coast and they need to be managed appropriately to avoid major environmental damage.

The NSW *Acid Sulfate Soils Manual*¹ (the ASS Manual) provides 'best practice' guidance for planning, assessing and managing activities in areas prone to developing ASS. The manual is available from the NSW Department of Planning: phone 1300 305 695.

Using this part of the Guidelines

This part of the EPA Waste Classification Guidelines (the Guidelines) applies to acid sulfate soils which are unable to be managed on-site. In these cases, off-site disposal to landfill is often the most appropriate management option.

Waste generators need to assess the status of ASS at their point of generation, using the techniques outlined in the ASS Manual. The ASS Manual also provides guidance for on-site management, while this part of the Waste Classification Guidelines details disposal requirements for ASS that need to be transported and managed off-site.

This document has advice on dealing with both 'potential' ASS and 'actual' ASS. The two types are often found together in the same soil profile, with actual ASS generally overlying potential ASS horizons.

Potential acid sulfate soils

Potential ASS are soils that contain iron sulfides or sulfidic materials that have not been exposed to air and thus are not oxidised. The pH of these soils in their undisturbed state is 5.5 or more, making them neutral or slightly alkaline. If not managed appropriately, potential ASS pose a considerable environmental risk: disturbance and exposure to air may render them severely acidic.

Handling potential acid sulfate soils prior to disposal

Potential ASS must be kept wet at all times during excavation and subsequent handling, transport and storage, until they can be disposed of safely. They must be received at the proposed disposal point within 16 hours of being dug up.

¹ Stone Y, Ahem, CR and Blunden, B 1998. *Acid Sulphate Soils Manual 1998*. Acid Sulphate Soils Management Advisory Committee (ASSMAC), Wollongbar, NSW.

Disposal of potential acid sulfate soils below the water table

Potential ASS may be disposed of in water below the permanent water table, provided:

- this occurs before they have had a chance to oxidise, i.e. within 24 hours of excavation and
- they meet the definition of 'virgin excavated natural material' (VENM) under the *Protection of the Environment Operations Act 1997*, even though they contain sulfidic ores or soils.

Landfills must be licensed by the EPA to dispose of potential ASS below the water table. EPA's Environment Line has details on facilities able to accept this waste: phone 131 555.

Potential ASS must be disposed of within 8 hours of their receipt at a landfill and kept wet at all times until their burial at least two metres below the lowest historical level of the water table at the disposal site.

Documentation must be provided to the occupier of the landfill for each truckload of potential ASS received, indicating that the soil's excavation, transport and handling have been in accordance with the ASS Manual, thus preventing the generation of acid.

The occupier of the disposal site must also test the pH of each load of soil received immediately prior to its placement under water using the test method(s) in the ASS Manual (Methods 21A and/or 21Af). These details, together with the pH of the soil recorded at the time of its extraction, must be retained by the occupier of the landfill site.

The disposal site's licence will outline what documentation needs to be kept and for how long.

Soil that has dried out, undergone any oxidation of its sulfidic minerals, or which has a pH of less than 5.5 must be treated by neutralisation and disposed of at a landfill that can lawfully accept it (see **Disposal of actual acid sulfate soils** below).

The pH of the water at the landfill into which the potential ASS is placed must not be less than 6.0 at any time. Landfill licence conditions require the occupiers of potential ASS disposal sites to regularly monitor the pH of ground and surface waters at their premises.

Disposal of potential acid sulfate soils above the water table

Where potential ASS cannot be classified as VENM or a suitable underwater disposal site at a landfill is not available, the soil must be treated in accordance with the neutralising techniques in the ASS Manual. After treatment the soil should be chemically assessed in accordance with Step 5 in Part 1 of the Waste Classification Guidelines, available at <u>www.epa.nsw.gov.au/waste/classification.htm</u>. This will determine whether any other contaminants are present in the material. When the classification has been established, the soil should be disposed of to a landfill that can lawfully accept that class of waste.

Actual acid sulfate soils

Actual ASS contain highly acidic soil horizons or layers resulting from the aeration of soil materials that are rich in sulfides, primarily iron sulfide. This oxidation produces more hydrogen ions than the sediment is able to neutralise, resulting in soils with a pH of 5.5 or less when measured in dry season conditions. These soils can usually be identified by the presence of pale yellow mottles and coatings of jarosite.

Treatment of actual acid sulfate soils prior to disposal

Actual ASS must be treated by the generator of the waste before they can be considered for disposal. Treatment should be in accordance with the neutralising techniques outlined in the ASS Manual.

Disposal of actual acid sulfate soils

Following neutralisation, the generator of the waste must chemically assess the soil in accordance with Step 5 of Part 1 of the Waste Classification Guidelines. This will determine whether there are any other contaminants that may affect how the waste is classified for disposal.

Once classified, the waste must be taken to a landfill licensed to accept that class of waste.

Prior arrangements should be made with the occupier of the landfill to ensure that it is licensed to accept the waste. The landfill should be informed that the actual ASS has been treated in accordance with the neutralising techniques outlined in the ASS Manual and that the waste has also been classified in accordance with Part 1 of the Waste Classification Guidelines.

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

APPENDIX D – CARRS DRIVE INSPECTION, MAINTENANCE & REPAIR PLAN

Carrs Drive Inspection, Maintenance and Repair Plan

Flexible road pavements deteriorate over time due to a range of load impacts and environmental factors. The combination of these results in accelerated deterioration over time in the absence of maintenance programs and repairs to identified defects.

The deterioration of the northern portion of Carrs Drive appears to have been accelerated by the increased traffic generated by construction activities and a lack of maintenance and repairs during this period of increased activity.

A general hierarchy of road treatment activities to ensure proper maintenance and operation of roads includes the following:

- 1. **Routine maintenance** routine maintenance involves regular inspections and minor works to prevent defects (such as street sweeping) or repair minor defects (such as pothole filling, crack sealing, edge break repair etc).
- Preventative maintenance Preventative maintenance includes activities such as resealing of roads, usually undertaken by Councils to restore function to the seal prior to failure of the seal and subsequent pavement failures
- 3. **Rehabilitation** Rehabilitation works include full depth patching (removal and replacement of failed segments of pavement to the subgrade or lower to restore structural integrity), structural overlays, levelling courses to fill ruts and restore crossfall
- 4. **Reconstruction** Full depth replacement of the pavement for the full length of the road.

Under Section 5.2 of Clarence Valley Council's Roads Policy, maintenance activities associated with existing sealed roads involve:

- Maintenance of sealed surface (pothole patching and edge break repair)
- Minor heavy patching of failures
- Shoulder grading and edge drop repair
- Kerb and gutter maintenance
- Street sweeping; and
- Pavement marking

The activities above are consistent with 'routine' maintenance of sealed roads.

It is understood that the intent of Condition 2 & 42 of DA Consent 2018/0373 is to establish a program of regular inspections and routine maintenance within Carrs Drive to ensure that during development construction, prior to the full reconstruction of Carrs Drive required under DA Condition 40, the pavement is maintained in a satisfactory and safe condition.

In light of the existing state of the pavement in Carrs Drive as documented in Section 3 above and Appendix 1, it is believed that Routine Maintenance has been generally insufficient to date with the pavement now exhibiting large areas of significant failure. This means that routine maintenance in the future will be ineffective in maintaining Carrs Drive to a safe and acceptable standard and it is therefor recommended that a combination of preventative maintenance (resealing) and rehabilitation (reconstruction of parts of Carrs Drive) be undertaken by the contractors currently active with Carrs Drive prior to the commencement of bulk earthworks operations relating to DA 2018/0373. Following

preventative maintenance and rehabilitation works, a routine inspection and maintenance program could be implemented by future contractors engaged to undertake works in relation to the MHE development, in conjunction with other contractors active within Carrs Drive.

The following table sets out the proposed inspection and maintenance routine to be implemented and paid for by future contractors engaged to undertake works on the approved MHE development:

DEFECT	INSPECTION	INTERVENTION	REPAIR	REPAIR METHOD			
	FREQUENCY	TRIGGER	TIMEFRAME				
Pothole	Daily – Civil	Pothole	Within 24	For potholes <300mm in			
	Contractor	greater than	hours of defect	diameter – repair with tack			
		50mm in any	identification	coat and cold mix asphalt			
	Weekly -	direction					
	Superintendent	horizontally or		For potholes >300mm in			
		greater than		diameter, or multiple			
		30mm deep		potholes/failures in close			
				proximity, repair with tack			
				coat and 100mm thick hot			
				mix asphalt (minor patching)			
Seal	Weekly – Civil	Seal cracks	Within 7 days	Apply crack sealant			
Cracking	Contractor &	>50mm in	of defect				
	Superintendent	length	identification				
Edge	Fortnightly –	Variation in	Within 7 days	Localised removal and			
drop	Civil Contractor	height of	of height	replacement of shoulder			
urop	and	>50mm	variation	material to achieve uniform			
	Superintendent	between edge		compaction over small			
	oupermeendem	of seal and	50mm	areas.			
		shoulder	••••				
		gravels		Regrading and compaction			
		0		of road shoulder for			
				extensive areas of edge			
				drop.			
Edge	Fortnightly –	>150mm wide	Within 7 days	Localised removal and			
break	Civil Contractor	and within	of defect	replacement of shoulder			
	and	250mm of	identification	materials, re sealing of			
	Superintendent	outer wheel		surface			
		path					
Loose	Daily – Civil	Any visible	Within 2 hours	Manual or mechanical street			
material	Contractor	mud, gravel or	of defect	sweeping			
/ gravel		construction	identification				
on	Weekly –	materials					
roadway	Superintendent						

1/64 Ballina Street (PO Box 44) Lennox Head NSW 2478 www.mde.au

APPENDIX E – BULK EARTHWORKS ITP

INSPECTION AND TEST PLAN FOR BULK EARTHWORKS

Proje	ct Manager		Approved By Clien	t				DATE	
Project: No: Activity: <i>BULK EARTHWORKS</i> Location:		ITP No:	Key: I Inspection T Test H Hold W Witness				S/C Subcontract C Contractor E Engineer/NATA C/R Client Representative /Council		
	Activity to be Inspected or Tested			Inspection/Test I			by:		Signed
No.	Include Q H&S and E	Frequency	Acceptance Criteria	S/C	С	Е	C/R	Records / Evidence	& Dated
1	No bulk earthworks to commence until trees and environmental protection measures erected.	Site	Trees – 24hrs notice prior to clearing Advise Council. Erosion controls approved by Council		Ι		I	Council inspection	
2	Carry out works to Work Method Statement requirements	Each Area	Verification by Site Supervisor		W			Daily Site Report entry by Site Supervisor	
3	Arrange for inspection to be made of areas stripped of topsoil prior to cut/fill	Each Area	Visual – no silt or non-compliant material		I	I		Geotechnical report	
4	Organise survey of stripped surfaces before placing fill.	Each Area	Survey has been undertaken prior to fill operations.		Н			Plans prepared by others	
5	Compact surface 200mm deep prior to filling operations.	Each Area	Where required by Geotech inspection			I		NATA tests or Geotechnical signoff	
6	Approval given by / Geotech to commence	Each Area	Verification by report				н	Council / geotechnical sign off	
7	Filling compacted and tested for density and moisture.	1 test per 500 sqm per 200mm layer	Dry density ratio AS1289.E4.1 95% standard AS 1289.5.1.1			Т		Geotechnical report.	
8	Final Inspection, All Records collated and satisfactory.	Each Area	All completed to satisfaction				W	Superintendents signoff	

ITP01 Bulk Earthworks